Skip to main content
Log in

One-dimensional 13C NMR and HPLC-1H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

For several decades isotope labelling techniques have been the indispensable tools used to unravel pathways of secondary product biosynthesis. NMR spectroscopy, together with mass spectrometry, is the most effective measuring technique used in the analysis of metabolites enriched with stable isotopes. 2H and 13C are the NMR-detectable nuclides which have been most frequently employed in plant secondary metabolite synthesis. Examples from the biosynthesis of phenylpropanoids, phenylphenalenones, and glucosinolates are used when discussing some aspects of one-dimensional NMR analysis of metabolites selectively labelled with 2H and 13C. Besides direct NMR detection of 13C-enriched metabolites, special emphasis is placed on indirect detection of 13C and 2H, especially by HPLC-1H NMR coupling, to analyse the isotopomer pattern of compounds in low concentration. The examples discussed in this paper were obtained from studies with Anigozanthos preissii (root cultures) (Haemodoraceae) and Eruca sativa (Brassicaceae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arigoni D, Giner J-L, Sagner S, Wungsintaweekul J, Zenk MH, Kis A, Bacher A & Eisenreich W (1999) Stereochemical course of the reduction step in the formation of 2-C-methylerythritrol from the terpene precursor 1-deoxyxylulose in higher plants. Chem. Commun. 1127–1128.

  • Cooke RG & Edwards JM (1981) Naturally occurring phenalenones and related compounds. Prog. Chem. Org. Nat. Prod. 40: 153–190.

    Google Scholar 

  • Doddrell DM, Reid DG & Williams DH (1984) Application of H-1 spectral editing techniques to study aspects of the biosynthesis of the antibiotic vancomycin. J. Magn. Reson. 56: 279–287.

    Google Scholar 

  • Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G & Eisenreich W (1998) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22: 567–598.

    Google Scholar 

  • Garson MJ & Staunton J (1979) Some new NMR methods for tracing the fate of hydrogen in biosynthesis. Chem. Soc. Rev. 8: 539–561.

    Google Scholar 

  • Graser G, Schneider B, Oldham NJ & Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch. Biochem. Biophys. 378: 411–419.

    PubMed  Google Scholar 

  • Hölscher D & Schneider B (1995) The biosynthetic origin of the central one-carbon-unit of phenylphenalenones in Anigozanthos preissii. Nat. Prod. Lett. 7: 177–182.

    Google Scholar 

  • Horak RM, Steyn PS & Vleggar R (1985) Carbon-carbon coupling constants derived from biosynthetic studies. Magn. Res. Chem. 23: 995–1039.

    Google Scholar 

  • Pearson JG & Oldfield E (1996) Oxygen-17 NMR: Applications in biochemistry NMR. In: Grant DM & Harris RK (eds) Encyclopedia of Nuclear Magnetic Resonance, Vol. 5 (pp. 3440–3443). Wiley, Chichester.

    Google Scholar 

  • Risley JM (1996) Oxygen-18 in biological NMR. In: Grant DM & Harris RK (eds). Encyclopedia of Nuclear Magnetic Resonance, Vol. 5 (pp. 3443–3448). Wiley, Chichester.

    Google Scholar 

  • Robins RJ, Bachmann P & Wooley JG (1994) Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine. J. Chem. Soc. Perkin I 615–619.

    Google Scholar 

  • Schmitt B & Schneider B (1999) Dihydrocinnamic acids are involved in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Phytochemistry 52: 45–53.

    Google Scholar 

  • Schmitt B, Hölscher D & Schneider B (2000) Variability of phenylpropanoid precursors in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Phytochemistry 53: 331–337.

    PubMed  Google Scholar 

  • Schmitt B & Schneider B (2001) Phenylpropanoid interconversion in Anigozanthos preissii observed by high-performance liquid chromatography – nuclear magnetic resonance spectroscopy. Phytochem. Anal. 12: 43–47.

    PubMed  Google Scholar 

  • Schneider B (2000) Natural Products: Liquid Chromatography-Nuclear Magnetic Resonance. In: Wilson ID, Adlard TR, Cooke M, Poole CF (eds) Encyclopedia of Separation Science, Vol. 7 (pp. 3434–3445). Academic Press, London.

    Google Scholar 

  • Simpson TJ (1998) Application of isotopic methods to secondary metabolic pathways biosynthesis. Topics Curr. Chem. 195: 1–48.

    Google Scholar 

  • Staunton J & Hailes HC (1996) Biosynthesis & metabolic pathways: Deuterium NMR. In: Grant DM & Harris RK (eds) Encyclopedia of Nuclear Magnetic Resonance, Vol. 2 (pp. 964–968) Wiley, Chichester.

    Google Scholar 

  • Tanabe M (1973) Stable isotopes in biosynthetic studies. In: Geisman TA (ed) Biosynthesis, Vol. 3(pp. 247–285). The Chemical Society, London.

    Google Scholar 

  • Vederas JC (1985) The use of stable isotopes in biosynthetic studies. Nat. Prod. Rep. 4: 277–337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B., Gershenzon, J., Graser, G. et al. One-dimensional 13C NMR and HPLC-1H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies. Phytochemistry Reviews 2, 31–43 (2003). https://doi.org/10.1023/B:PHYT.0000004196.73829.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000004196.73829.4e

Navigation