Skip to main content
Log in

Intracellular signaling pathways for norepinephrine- and endothelin-1-mediated regulation of myocardial cell apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Accumulating data support the idea that apoptosis in cardiac myocytes, in part, contributes to the development of heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. Norepinephrine is one such factor and induces apoptosis in cardiac myocytes via a β-adrenergic receptor pathway. β-adrenergic agonist-induced apoptosis in cardiac myocytes is dependent on the activation of the cAMP/protein kinase A pathway. Interestingly, the activation of this pathway protects PC12 cells from apoptosis, suggesting that cAMP/protein kinase A regulates apoptosis in a cell type-specific manner. Another neurohormonal factor activated in heart failure is endothelin-1, which acts as a potent survival factor against myocardial cell apoptosis. Intracellular signaling pathways for endothelin-1-mediated protection include activation of MEK-1/ERK1/2 and PI3 kinase. In addition to these protective pathways common among cell types, endothelin-1 activates the calcium-activated phosphatase calcineurin, which is necessary for the nuclear import of NFAT transcription factors. These factors interact with the cardiac-restricted zinc finger protein GATA-4 and induce transcription and expression of anti-apoptotic molecule bcl-2. Thus, myocardial cell apoptosis is regulated by pathways unique to cardiac myocytes as well as by those common among cell types. It should be further determined whether agents that specifically block myocardial cell apoptosis will attenuate the progression of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell 88: 347-354, 1997

    Article  PubMed  Google Scholar 

  2. Nagata S: Apoptosis by death factor. Cell 88: 355-365, 1997

    Article  PubMed  Google Scholar 

  3. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA: Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335: 1182-1189, 1996

    Article  PubMed  Google Scholar 

  4. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Natahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P: Apoptosis in the failing human heart. N Engl J Med 336: 1131-1141, 1997

    Article  PubMed  Google Scholar 

  5. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gadoury L, Tremblay J, Schwartz K, Hamet P: Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 97: 2891-2897, 1996

    PubMed  Google Scholar 

  6. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG: Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272: H2313-H2319, 1997

    PubMed  Google Scholar 

  7. Hirota H, Chen J, Bets UA, Rajewsky K, Gu Y, Ross J Jr, Muller W, Chien KR: Loss of gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97: 189-198, 1999

    PubMed  Google Scholar 

  8. Francis GS, Chon JN, Johnson G, Rector TS, Goldman S, Simon A: Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II: The V-HeFT VA Cooperative Studies Group. Circulation 87(suppl VI): VI-40-VI-48, 1993

    Google Scholar 

  9. Packer M: The neurohormonal hypothesis: A theory to exolain the mechanism of disease progression in heart failure (editorial). J Am Coll Cardiol 20: 248-254, 1992

    PubMed  Google Scholar 

  10. Wei CM, Lerman A, Rodeheffer RJ, McGregor CG, Brandt RR, Wright S, Heublein DM, Kao PC, Edwards WD, Burnett JC Jr: Endothelin in human congestive heart failure. Circulation 89: 1580-1586, 1994

    PubMed  Google Scholar 

  11. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita K: Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384: 353-355, 1996

    Article  PubMed  Google Scholar 

  12. Iwanaga Y, Kihara Y, Hasegawa K, Inagaki K, Yoneda T, Kaburagi S, Araki M, Sasayama S: Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation 98: 2065-2073, 1998

    PubMed  Google Scholar 

  13. Hadcock JR, Malbon CC: Agonist regulation of gene expression of adrenergic receptors and G proteins. J Neurochem 60: 1-9, 1993

    PubMed  Google Scholar 

  14. Rokosh DG, Stewart AF, Chang KC, Bailey BA, Karliner JS, Camacho SA, Long CS, Simpson PC: Alpha-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. J Biol Chem 271: 5839-5843, 1996

    Article  PubMed  Google Scholar 

  15. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS: Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189: 257-265, 2001

    Article  PubMed  Google Scholar 

  16. Hasegawa K, Iwai-Kanai E, Sasayama S: Neurohormonal regulation of myocardial cell apoptosis during development of heart failure. J Cell Physiol 186: 11-18, 2001

    Article  PubMed  Google Scholar 

  17. Daaka Y, Luttrell LM, Lefkowitz RJ: Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390: 88-91, 1997

    Article  PubMed  Google Scholar 

  18. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S: Alpha-and beta-adrenergic pathways differentially regulate cell type specific apoptosis in rat cardiac myocytes. Circulation 100: 305-311, 1999

    PubMed  Google Scholar 

  19. Communal C, Singh K, Pimentel DR, Colucci WS: Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98: 1329-1334, 1998

    PubMed  Google Scholar 

  20. Engelhardt S, Hein L, Wiesmann F, Lohse MJ: Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96: 7059-7064, 1999

    Article  PubMed  Google Scholar 

  21. Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wright DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF: Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 78: 517-524, 1996

    PubMed  Google Scholar 

  22. Shizukuda Y, Buttrick PM: Subtype specific roles of beta-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J Mol Cell Cardiol 34: 823-831, 2002

    Article  PubMed  Google Scholar 

  23. Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA: Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102: 344-350, 2000

    PubMed  Google Scholar 

  24. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decreases and cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99: 1685-1691, 1999

    PubMed  Google Scholar 

  25. Yue TL, Ma XL, Wong X et al.: Possible involvement of stress-activated protein kinase signaling pathway and FAS receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82: 166-179, 1998

    PubMed  Google Scholar 

  26. Packer M, Colucci WS, Sackner-Bernstein J et al.: Double blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE trial. Circulation 94: 2793-2799, 1996

    PubMed  Google Scholar 

  27. Australia/New Zealand Heart Failure Collaborative Group: Randomized, placebo controlled trial of carvedilol in patients with congestive heart failure due to ischemic heart disease. Lancet 349: 375-380, 1997

    Google Scholar 

  28. Simpson P: Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha1 adrenergic response. J Clin Invest 72: 732-738, 1983

    PubMed  Google Scholar 

  29. Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ: Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 272: 21253-21259, 1997

    Article  PubMed  Google Scholar 

  30. Grupp IL, Lorenz JN, Walsh RA, Boivin GP, Rindt H: Overexpression of alpha1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275: H1338-H1350, 1998

    PubMed  Google Scholar 

  31. Hunter JJ, Chien KR: Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341: 1276-1283, 1999

    Article  PubMed  Google Scholar 

  32. Iwai-Kanai E, Hasegawa K, Fujita M, Araki M, Yanazume T, Adachi S, Sasayama S: Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis. J Cell Physiol 190: 54062, 2002

    Article  Google Scholar 

  33. Bueno OF, Molkentin JD: Involvement of extracellular signal-regulated kinases in cardiac hypertrophy and cell death. Circ Res 91: 776-781, 2002

    Article  PubMed  Google Scholar 

  34. D'angelo DD, Sakata Y, Lorena JN, Boivin GP, Walsh GP, Liggett SB, Dorn GWI: Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94: 8121-8126, 1997

    Article  PubMed  Google Scholar 

  35. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW: Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95: 10140-10145, 1998

    Article  PubMed  Google Scholar 

  36. Sabri A, Wilson BA, Steinberg SF: Dual actions of the Gαq agonist Pasteurella multicoda toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circ Res 90: 850-857, 2002

    Article  PubMed  Google Scholar 

  37. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki Y: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411-415, 1988

    Article  PubMed  Google Scholar 

  38. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Muruno F, Hiroe M: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92: 398-403, 1993

    PubMed  Google Scholar 

  39. Arai H, Hori S, Aramori I, Okubo H, Nakanishi S: Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730-732, 1990

    Article  PubMed  Google Scholar 

  40. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T: Cloning of a cDNA encoding a non-isopeptide-selective subtype of endothelin receptor. Nature 348: 732-735, 1990

    Article  PubMed  Google Scholar 

  41. Araki M, Hasegawa K, Iwai-Kanai E, Fujita M, Sawamura T, Kakita T, Wada H, Morimoto T, Sasayama S: Endothelin-1 as a protective factor against beta-adrenergic agonist-induced apoptosis in cardiac myocytes. J Am Coll Cardiol 36: 1411-1418, 2000

    Article  PubMed  Google Scholar 

  42. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G: Phosphorylation sites in the autoinhibitory domain participate in p70 (S6K) activation loop phosphorylation. Science 279: 707-710, 1998

    Article  PubMed  Google Scholar 

  43. Burnett PE, Barrow RK, Cohen N, Snyder SH, Sabatini DM: RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci 95: 1432-1437, 1998

    Article  PubMed  Google Scholar 

  44. Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall REH, Thomas G: The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 21: 5279-5287, 1995

    Google Scholar 

  45. Ankersmit HJ, Roth G, Zuckermann A, Moser B, Obermaier R, Taghavi S, Brunner M, Wieselthaler G, Lanzenberger M, Ullrich R, Laufer G, Grimm M, Wolner E: Rapamycin as rescue therapy in a patient supported by biventricular assist device to heart transplantation with consecutive ongoing rejection. Am J Transplant 3: 231-234, 2003

    Article  PubMed  Google Scholar 

  46. Wang L, Gout I, Proud CG: Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. J Biol Chem 276: 32670-32677, 2001

    Article  PubMed  Google Scholar 

  47. Kakita T, Hasegawa K, Iwai-Kanai E, Adachi S, Morimoto T, Wada H, Kawamura T, Yanazume T, Sasayama S: Calcineurin pathway is required for endothelin-1-mediated protection against oxidant stress-induced apoptosis in cardiac myocytes. Circ Res 88: 1239-1246, 2001

    PubMed  Google Scholar 

  48. Klee CB, Ren H, Wang X: Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273: 13367-13370, 1998

    Article  PubMed  Google Scholar 

  49. Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olsen EN, Williams RS: MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19: 1963-1973, 2000

    Article  PubMed  Google Scholar 

  50. Vega RB, Yang J, Rothermel BA, Bassel-Duby R, Williams RS: Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J Biol Chem 277: 30401-30407, 2002

    Article  PubMed  Google Scholar 

  51. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215-228, 1998

    Article  PubMed  Google Scholar 

  52. Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I: β-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275: 34528-34533, 2000

    Article  PubMed  Google Scholar 

  53. Lotem J, Kama R, Sachs L: Suppression or induction of apoptosis by opposing pathways downstream from calcium-activated calcineurin. Proc Natl Acad Sci USA 96: 12016-12020, 1999

    Article  PubMed  Google Scholar 

  54. Gill C, Mestril R, Samali A: Losing heart: The role of apoptosis in heart disease — a novel therapeutic target? FASEB J 16: 135-146, 2002

    Article  PubMed  Google Scholar 

  55. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD: The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19: 6341-6350, 2000

    Article  PubMed  Google Scholar 

  56. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN, Molkentin JD: Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 18;86: 255-263, 2000

    Google Scholar 

  57. Feuerstein GZ, Young PR: Apoptosis in cardiac diseases: Stress-and mitogen-activated signaling. Cardiovasc Res 45: 560-569, 2000

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai-Kanai, E., Hasegawa, K. Intracellular signaling pathways for norepinephrine- and endothelin-1-mediated regulation of myocardial cell apoptosis. Mol Cell Biochem 259, 163–168 (2004). https://doi.org/10.1023/B:MCBI.0000021368.80389.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000021368.80389.b9

Navigation