Skip to main content
Log in

Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of synthetic hydrotalcites reevesite (Ni6Fe2(CO3)(OH)16·4H2O) and pyroaurite (Mg6Fe2(SO4,CO3)(OH)16·4H2O) and the cationic mixtures of the two minerals. XRD patterns show the hydrotalcites are layered structures with interspacing distances of around 8.0. Å. A linear relationship is observed for the d(001) spacing as Ni is replaced by Mg in the progression from reevesite to pyroaurite. The significance of this result means the interlayer spacing in these hydrotalcites is cation dependent. High resolution thermal analysis shows the decomposition takes place in 3 steps. A mechanism for the thermal decomposition is proposed based upon the loss of water, hydroxyl units, oxygen and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Kloprogge and R. L. Frost, Applied Catalysis, A: General, 184 (1999) 61.

    Article  Google Scholar 

  2. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, Y. Cesteros and J. E. Sueiras, Appl. Catal., B, 30 (2001) 195.

    Article  CAS  Google Scholar 

  3. J. Das and K. Parida, React. Kinet. Catal. Lett., 69 (2000) 223.

    Article  CAS  Google Scholar 

  4. S. H. Patel, M. Xanthos, J. Grenci and P. B. Klepak, J. Vinyl Addit. Technol., 1 (1995) 201.

    Article  CAS  Google Scholar 

  5. V. Rives, F. M. Labajos, R. Trujillano, E. Romeo, C. Royo and A. Monzon, Appl. Clay Sci., 13 (1998) 363.

    Article  CAS  Google Scholar 

  6. F. Rey, V. Fornes and J. M. Rojo, J. Chem. Soc., Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  7. M. Valcheva-Traykova, N. Davidova and A. Weiss, J. Mater. Sci., 28 (1993) 2157.

    Article  CAS  Google Scholar 

  8. C. O. Oriakhi, I. V. Farr and M. M. Lerner, Clays and Clay Minerals, 45 (1997) 194.

    Article  CAS  Google Scholar 

  9. G. Lichti and J. Mulcahy, Chemistry in Australia, 65 (1998) 10.

    CAS  Google Scholar 

  10. Y. Seida and Y. Nakano, J. Chem. Eng. Japan, 34 (2001) 906.

    Article  CAS  Google Scholar 

  11. Y. Roh, S. Y. Lee, M. P. Elless and J. E. Foss, Clays and Clay Minerals, 48 (2000) 266.

    Article  CAS  Google Scholar 

  12. Y. Seida, Y. Nakano and Y. Nakamura, Water Research, 35 (2001) 2341.

    Article  CAS  Google Scholar 

  13. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, J. M. Luque, J. R. Ruiz and F. J. Urbano, Mater. Lett., 43 (2000) 118.

    Article  CAS  Google Scholar 

  14. V. R. L. Constantino and T. J. Pinnavaia, Inorg. Chem., 34 (1995) 883.

    Article  CAS  Google Scholar 

  15. M. Del Arco, P. Malet, R. Trujillano and V. Rives, Chem. Mater., 11 (1999) 624.

    Article  CAS  Google Scholar 

  16. K. Hashi, S. Kikkawa and M. Koizumi, Clays and Clay Minerals, 31 (1983) 152.

    CAS  Google Scholar 

  17. L. Ingram and H. F. W. Taylor, Mineralogical Magazine and Journal of the Mineralogical Society, (1876–1968) 36 (1967) 465.

    CAS  Google Scholar 

  18. R. M. Taylor, Clay Minerals, 17 (1982) 369.

    CAS  Google Scholar 

  19. H. F. W. Taylor, Mineralogical Magazine and Journal of the Mineralogical Society, (1876–1968) 37 (1969) 338.

    CAS  Google Scholar 

  20. H. C. B. Hansen and C. B. Koch, Applied Clay Science, 10 (1995) 5.

    Article  CAS  Google Scholar 

  21. E. H. Nickel and J. E. Wildman, Mineralogical Magazine, 44 (1981) 333.

    CAS  Google Scholar 

  22. D. L. Bish and A. Livingstone, Mineralogical Magazine, 44 (1981) 339.

    CAS  Google Scholar 

  23. E. H. Nickel and R. M. Clarke, American Mineralogist, 61 (1976) 366.

    CAS  Google Scholar 

  24. P. G. Rouxhet and H. F. W. Taylor, Chimia, 23 (1969) 480.

    CAS  Google Scholar 

  25. R. L. Frost, Z. Ding and H. D. Ruan, J. Therm. Anal. Cal., 71 (2003) 783.

    Article  CAS  Google Scholar 

  26. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.

    Article  CAS  Google Scholar 

  27. E. Horvath, R. L. Frost, E. Mako, J. Kristof and T. Cseh, Thermochim. Acta, 404 (2003) 227.

    Article  CAS  Google Scholar 

  28. W. N. Martens, Z. Ding, R. L. Frost, J. Kristof and J. T. Kloprogge, J. Raman Spectroscopy, 33 (2002) 31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.L., Erickson, K.L. Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite. Journal of Thermal Analysis and Calorimetry 76, 217–225 (2004). https://doi.org/10.1023/B:JTAN.0000027820.58744.bd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027820.58744.bd

Navigation