Skip to main content
Log in

The Markov–Krein Correspondence in Several Dimensions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Given a probability distribution \(\tau \) on a space X, let M=M \(\tau \)denote the random probability measure on X known as Dirichlet random measure with parameter distribution \(\tau \). We prove the formula \(\left\langle {\frac{1}{{1 - z_1 F_1 (M) - ... - z_m F_m (M)}}} \right\rangle = {\text{exp}}\int {{\text{ln}}} \frac{1}{{1 - z_1 f_1 (x) - ... - z_m f_m (x)}}\tau (dx)\) where \(F_k (M) = \int_X {f_k } (x)M(dx)\), the angle brackets denote the average in M, and f 1,...,f m are the coordinates of a map \(f:X \to \mathbb{R}^m \). The formula describes implicitly the joint distribution of the random variables F k (M), k=1,...,m. Assuming that the joint moments \(p_{k_1 ,...,k_m } = \int {f_1^{k_1 } } (x)...f_m^{k_m } (x)d\tau (x)\) are all finite, we restate the above formula as an explicit description of the joint moments of the variables F 1,...,F m in terms of \(p_{k_1 ,...,k_m } \). In the case of a finite space, |X|=N+1, the problem is to describe the image \(\mu \) of a Dirichlet distribution \(\frac{{M_0^{\tau _{0^{ - 1} } } M_1^{\tau _{1^{ - 1} } } ...M_N^{\tau _{N^{ - 1} } } }}{{\Gamma (\tau _0 )\Gamma (\tau _1 )...\Gamma (\tau _N )}}dM_1 ...dM_{N;} {\text{ }}M_0 ,...,M_N \geqslant 0,M_0 + ... + M_N = 1\) on the N-dimensional simplex \(\Delta ^N \) under a linear map \(f:\Delta ^N \to \mathbb{R}^m \). An explicit formula for the density of \(\mu \) was already known in the case of m=1; here we find it in the case of m=N-1. Bibliography: 15 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. M. Cifarelli and E. Regazzini, “Some remarks on the distribution functions of means of a Dirichlet process,” Ann. Statist., 18, 429–442 (1990).

    Google Scholar 

  2. P Diaconis and J. Kemperman, “Some New Tools for Dirichlet Priors,” in: Bayesian Statistics, Vol. 5, J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds.), Oxford University Press (1996), pp. 97–106.

  3. H. Exton, Multiple Hypergeometric Functions and Applications, John Wiley & Sons Inc., New York (1976).

    Google Scholar 

  4. P. D. Feigin and R. L. Tweedie, “Linear functionals and Markov chains associated with Dirichlet process,” Math. Proc. Camb. Phil. Soc., 105, 579–585 (1989).

    Google Scholar 

  5. T. Ferguson, “A Bayesian analysis of some nonparametric problems,” Ann. Statist., 1, 209–230 (1973).

    Google Scholar 

  6. S. Kerov, “Interlacing measures,” Amer. Math. Soc. Transl., 181, 35–83 (1998).

    Google Scholar 

  7. J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford (1993).

    Google Scholar 

  8. M. G. Krein and A. A. Nudelman, “The Markov moment problem and extremal problems,” Translations of Mathematical Monographs, No. 50, AMS, Providence, Rhode Island (1977).

    Google Scholar 

  9. D. Kulin, “Multidimensional Markov-Krein correspondence,” Diploma Thesis, St. Petersburg State University (2000).

  10. I. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford (1979).

    Google Scholar 

  11. A. A. Markov, “Nouvelles applications des fractions continues,” Math. Ann., 47, 579-597 (1896).

    Google Scholar 

  12. J. Pitman, “The two-parameter generalization of Ewens' random partition structure,” Tech. Report, 345, 1–23 (1992).

    Google Scholar 

  13. J. Pitman, “Some developments of the Blackwell—MacQueen urn scheme,” in: Statistics, Probability and Game Theory (Monograph Ser.), Vol. 30, Ferguson T. S., Shapley L. S., and MacQueen J. B. (eds.), IMS Lect. Notes, (1996), pp. 245–267.

  14. J. Pitman and M. Yor, “The two-parameter Poisson—Dirichlet distribution derived from a stable subordinator,” Ann. Prob., 25, 855–900 (1997).

    Google Scholar 

  15. N. V. Tsilevich, “Distribution of mean values of some random measures,” Zap. Nauchn. Semin. POMI, 240, 268–279 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerov, S.V., Tsilevich, N. The Markov–Krein Correspondence in Several Dimensions. Journal of Mathematical Sciences 121, 2345–2359 (2004). https://doi.org/10.1023/B:JOTH.0000024616.50649.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000024616.50649.89

Keywords

Navigation