Skip to main content
Log in

A Proof of the Gibbs—Thomson Formula in the Droplet Formation Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study equilibrium droplets in two-phase systems at parameter values corresponding to phase coexistence. Specifically, we give a self-contained microscopic derivation of the Gibbs–Thomson formula for the deviation of the pressure and the density away from their equilibrium values which, according to the interpretation of the classical thermodynamics, appears due to the presence of a curved interface. The general—albeit heuristic—reasoning is corroborated by a rigorous proof in the case of the two-dimensional Ising lattice gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. Alexander, J. T. Chayes, and L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation, Comm. Math. Phys. 131:1–51 (1990).

    Google Scholar 

  2. K. Binder, Theory of evaporation/condensation transition of equilibrium droplets in finite volumes, Physica A 319:99–114 (2003).

    Google Scholar 

  3. K. Binder and M. H. Kalos, Critical clusters in a supersaturated vapor: Theory and Monte Carlo simulation, J. Statist. Phys. 22:363–396 (1980).

    Google Scholar 

  4. M. Biskup, L. Chayes, and R. Kotecký, On the formation/dissolution of equilibrium droplets, Europhys. Lett. 60:21–27 (2002).

    Google Scholar 

  5. M. Biskup, L. Chayes, and R. Kotecký, Critical region for droplet formation in the twodimensional Ising model, Comm. Math. Phys. 242:137–183 (2003).

    Google Scholar 

  6. T. Bodineau, The Wulff construction in three and more dimensions, Comm. Math. Phys. 207:197–229 (1999).

    Google Scholar 

  7. T. Bodineau, D. Ioffe, and Y. Velenik, Rigorous probabilistic analysis of equilibrium crystal shapes, J. Math. Phys. 41:1033–1098 (2000).

    Google Scholar 

  8. C. Borgs and R. Kotecký, Surface-induced finite-size effects for first-order phase transitions, J. Stat. Phys. 79:43–115 (1995).

    Google Scholar 

  9. J. Bricmont, J. L. Lebowitz, and C.-E. Pfister, On the local structure of the phase separation line in the two-dimensional Ising system, J. Stat. Phys. 26:313–332 (1981).

    Google Scholar 

  10. R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque 267: vi+177 (2000).

    Google Scholar 

  11. R. Cerf and A. Pisztora, On the Wulff crystal in the Ising model, Ann. Probab. 28:947–1017 (2000).

    Google Scholar 

  12. J. T. Chayes, L. Chayes, and R. H. Schonmann, Exponential decay of connectivities in the two-dimensional Ising model, J. Stat. Phys. 49:433–445 (1987).

    Google Scholar 

  13. P. Curie, Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces, Bull. Soc. Fr. Mineral. 8:145 (1885); Reprinted in OEuvres de Pierre Curie(Gauthier-Villars, Paris, 1908), pp. 153-157.

    Google Scholar 

  14. R. L. Dobrushin, R. Kotecký, and S. B. Shlosman, Wulff Construction. A Global Shape from Local Interaction(Amer. Math. Soc., Providence, RI, 1992).

  15. R. L. Dobrushin and S. B. Shlosman, in Probability Contributions to Statistical Mechanics(Amer. Math. Soc., Providence, RI, 1994), pp. 91–219.

  16. H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9 (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  17. J. W. Gibbs, On the equilibrium of heterogeneous substances (1876), in Collected Works, Vol. 1 (Longmans, Green, 1928).

  18. R. B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of magnetization of an Ising ferromagnet in a positive external field, J. Math. Phys. 11:790–795 (1970).

    Google Scholar 

  19. D. Ioffe, Large deviations for the 2D Ising model: A lower bound without cluster expansions, J. Stat. Phys. 74:411–432 (1994).

    Google Scholar 

  20. D. Ioffe, Exact large deviation bounds up to Tc for the Ising model in two dimensions, Probab. Theory Related Fields 102:313–330 (1995).

    Google Scholar 

  21. D. Ioffe and R. H. Schonmann, Dobrushin-Kotecký-Shlosman theorem up to the critical temperature, Comm. Math. Phys. 199:117–167 (1998).

    Google Scholar 

  22. B. Krishnamachari, J. McLean, B. Cooper, and J. Sethna, Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities, Phys. Rev. B 54:8899–8907 (1996).

    Google Scholar 

  23. R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103:491–498 (1986).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, in Statistical Physics, Vol. 5 (Pergamon Press, Oxford/Edinburgh/New York, 1968).

    Google Scholar 

  25. T. Neuhaus and J. S. Hager, 2D crystal shapes, droplet condensation and supercritical slowing down in simulations of first order phase transitions, J. Stat. Phys. 113:47–83 (2003).

    Google Scholar 

  26. C.-E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64:953–1054 (1991).

    Google Scholar 

  27. C.-E. Pfister and Y. Velenik, Large deviations and continuum limit in the 2D Ising model,Probab. Theory Related Fields 109:435–506 (1997).

    Google Scholar 

  28. R. H. Schonmann and S. B. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models, Comm. Math. Phys. 194:389–462 (1998).

    Google Scholar 

  29. D. Tabor, Gases, Liquids and Solids: And Other States of Matter,3rd Edn. (Cambridge University Press, Cambridge, 1991).

  30. G. Wulff, Zur Frage des Geschwindigkeit des Wachsturms und der Auflösung der Krystallflachen, Z. Krystallog. Mineral. 34:449–530 (1901).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Chayes, L. & Kotecký, R. A Proof of the Gibbs—Thomson Formula in the Droplet Formation Regime. Journal of Statistical Physics 116, 175–203 (2004). https://doi.org/10.1023/B:JOSS.0000037209.36990.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037209.36990.eb

Navigation