Skip to main content
Log in

Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We determined hydrogen isotope ratios of modern lake-waters and individual lipids from surface sediments of 36 lakes in the eastern North America. The lakes selected lie on two transects (south–north transect from Florida to Ontario and east–west transect from Wisconsin to South Dakota) and encompass large temperature and moisture gradients, and a wide range of lake water δD values (>100‰). The study allows a rigorous test of the applicability of using δD values of sedimentary lipids as paleoclimatic and paleoenvironmental proxies. We examined a range of lipids including C17 n-alkane, straight chain fatty acids, phytol and sterols in both free extracts and ester-bound fractions in the solvent extracted sediments. Useful isotopic indicators are expected to show a linear correlation and constant fractionation factor between their δD values in surface sediments and modern lake water. Our results demonstrate that several lipid compounds, free and ester-bound palmitic acid (16:0), C17 n-alkane, and phytol are useful candidates for paleoclimate reconstructions, in addition to two sterols that have been suggested previously (. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditons. Geochim. Cosmochim. Acta 65: 213–222). Authigenic or biogenic carbonate in sediments is conventional material for paleoclimatic study using ocean and lake sediments. However, because majority of lake sediments do not contain suitable carbonate materials for isotopic study, hydrogen isotope ratios of these lipids provide invaluable new sources of paleoclimatic and paleoenvironmental information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson W.T., Mullins H.T. and Ito E. 1997. Stable isotope record from Seneca Lake, New York: evidence for a cold paleoclimate following the Younger Dryas. Geology 25: 135–138.

    Google Scholar 

  • Andersen N., Paul H.A., Bernasconi S.M., McKenzie J.A., Behrens A., Schaeffer P. and Albrecht P. 2001. Large and rapid climate variability during the Messinian salinity crisis: evidence from deuterium concentrations of individual biomarkers. Geology 29: 799–802.

    Google Scholar 

  • Bartlein P.J., Webb T. III and Fleri E.C. 1984. Holocene climate change in the northern Midwest: pollen-derived estimates. Quat. Res. 22: 361–374.

    Google Scholar 

  • Behrens A., Schaeffer P., Bernasconi S. and Albrecht P. 2000. 7-11-cyclobotryococca-5,12,26-triene, a novel botryococcenerelated hydrocarbon occurring in natural environments. Org. Lett. 2: 1271–1274.

    Google Scholar 

  • Brocks J.J., Logan G.A. and Summons R.E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036.

    Google Scholar 

  • Cranwell P.A. 1981. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediments. Org. Geochem. 3: 79–89.

    Google Scholar 

  • Cranwell P.A., Eglinton G. and Robinson N. 1987. Lipids of aquatic organisms as potential contributions to lacustrine sediments. II. Hydrocarbons, ketones, carboxylic acids. Org. Geochem. 11: 513–527.

    Google Scholar 

  • Cumming B.F. and Smol J.P. 1993. Scaled chrysophytes and pH inference models: the effects of converting scale counts to cell counts and other species data transformations. J. Paleolim. 9: 147–153.

    Google Scholar 

  • DeNiro M.J. and Epstein S. 1981. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta 45: 1885–1894.

    Google Scholar 

  • Edwards T.W.D. and McAndrews J.H. 1989. Paleohydrology of a Canadian Shield lake inferred from 18O in sediment cores. Can. J. Ear. Sci. 26: 1850–1859.

    Google Scholar 

  • Eglinton G. and Hamilton R.J. 1967. Leaf epicuticular waxes. Science 156: 1322–1334.

    Google Scholar 

  • Estep M.F. and Hoering T.C. 1980. Biochemistry of the stable hydrogen isotopes. Geochim. Cosmochim. Acta 44: 1197–1206.

    Google Scholar 

  • Ficken K.J., Li B., Swain D.L. and Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31: 745–749.

    Google Scholar 

  • Fritz S.C. 1990. Twentieth-century salinity and water level fluctuations in Devil’s Lake, N. Dakota: a test of a diatom-based transfer function. Limnol. Oceanogr. 35: 1771–1781.

    Google Scholar 

  • Gelpi E., Schneider H., Mann J. and Oró J. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9: 603–476.

    Google Scholar 

  • Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P. and Fontes J.C. (eds), Handbook of Environmental Isotope Geochemistry: Vol. 2: The Terrestrial Environment B, Elsevier Press, New York, pp. 113–168.

    Google Scholar 

  • Grice K., Schouten S., Nissenbaum A., Charrach J. and Sinninghe Dameste J.S. 1998. A remarkable paradox: sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem. Org. Geochem. 28: 195–216.

    Google Scholar 

  • Hartgers W.A., Sinninghe Damsté J.S., Requejo A.G., Allan J., Hayes J.M. and de Leeuw J.W. 1994. Evidence for a small bacterial contribution to sedimentary organic carbon. Nature 369: 224–227.

    Google Scholar 

  • Harwood J.L. and Russell N.J. 1984. Lipids in Plants and Microbes. George Allen and Unwin, London, 162 pp ■ ■ Author, Reference not cited in the text ■ ■.

    Google Scholar 

  • Harwood and Russell 1993. ■ ■ Author, please supply missing information ■ ■.

  • Hassan K.M. and Spalding R.F. 2001. Hydrogen isotope values in lacustrine kerogen. Chem. Geol. 175: 713–721.

    Google Scholar 

  • Huang Y., Lockheart M., Collister J.W. and Eglinton G. 1995. Molecular and isotopic biogeochemistry of the Miocene Clarkia formation: hydrocarbons and alcohols. Org. Geochem. 23: 785–801.

    Google Scholar 

  • Huang Y., Murray M., Metzger P. and Eglinton G. 1996. Novel unsaturated triterpenoid hydrocarbons from sediments of Sacred Lake, Mt. Kenya, Kenya. Tetrahedron 52: 6973–6982.

    Google Scholar 

  • Huang Y., Street-Perrott F.A., Perrott F.A., Metzger P. and Eglinton G. 1999. Glacial-interglacial environmental changes inferred from the molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt Kenya. Geochim. Cosmochim. Acta 63: 1383–1404.

    Google Scholar 

  • Huang Y., Street-Perrott F.A., Metcalfe S.E., Brenner M., Moreland M. and Freeman K.H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293: 1647–1651.

    Google Scholar 

  • Huang Y., Shuman B., Wang Y. and Webb T. III 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late-quaternary climate variations. Geology 30: 1103–1106.

    Google Scholar 

  • Kelts K. and Talbot M. 1990. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. In: Tilzer M.M. and Serruya C. (eds), Large Lakes: Ecological Structure and Function, Springer-Verlag, Berlin, pp. 288–315.

    Google Scholar 

  • Kirby M.E., Mullins H.T., Patternson W.P. and Burnett A.W. 2001. Lacustrone isotopic evidence for multidecadal natural climate variability related to the circumpolar vortex over the northeast United State during the past millennium. Geology 29: 807–810.

    Google Scholar 

  • Kirby M.E., Mullins H.T., Patterson W.P. and Burnett A.W. 2002. Late Glacial-Holocene atmospheric circulation and precipitation in the northeast United States inferred from modern calibrated stable oxygen and carbon isotopes. GSA Bull. 114: 1326–1340.

    Google Scholar 

  • Krishnamurthy R.V., Syrup K.A., Baskaran M. and Long A. 1995. Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Science 269: 1565–1567.

    Google Scholar 

  • Meyers P.A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Lautentian Great Lakes. Org. Geochem. 34: 261–289.

    Google Scholar 

  • Meyers P.A. and Ishiwatari R. 1993. Lacustrine organic geochemistry — an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867–900.

    Google Scholar 

  • Ourisson G., Albrecht P. and Rohmer M. 1979. The hopanoids. Pure Appl. Chem. 51: 709–729.

    Google Scholar 

  • Patterson G.W. 1994. Phylogenenic distribution of sterols. In: Nes W.D. (ed.), Isoprenoids and Other Natural Products. Evolution and Function, American Chemical Society, pp. 90–108.

  • Pearson A., Eglinton T.I. and McNichol A.P. 2000. An organic tracer for surface ocean radiocarbon. Paleoceanography 15: 541–550.

    Google Scholar 

  • Pearson A., McNichol A.P., Benitez-Nelson B.C., Hayes J.M. and Eglinton T.I. 2001. Origin of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ14C analysis. Geochim. Cosmochim Acta 65: 3123–3137.

    Google Scholar 

  • Pond K.L., Huang Y., Wang Y. and Kulpa C.F. 2002. Hydrogen isotopic compositions of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination. Environ. Sci. Tech. 36: 724–728.

    Google Scholar 

  • Rowland S.J. and Maxwell J.R. 1990. Phytenic aldehydes in a freshwater sediment. Org. Geochem. 15: 457–460.

    Google Scholar 

  • Sauer P.E., Eglinton T.I., Hayes J.M., Schimmelmann A. and Sessions A. 2001a. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65: 213–222.

    Google Scholar 

  • Sauer P.E., Miller G.H. and Overpeck J.T. 2001b. Oxygen isotope ratios of organic matter in arctic lakes as a paleoclimate proxy: field and laboratory investigations. J. Paleolim. 25: 43–64.

    Google Scholar 

  • Sessions A.L., Jahnke L.L., Schimmelmann A. and Hayes J.M. 2002. Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus. Geochem. Cosmochim. Acta 66: 3955–3969.

    Google Scholar 

  • Sinninghe Damste J.S., Irene S.R.W., Rijpstra C., Abbas B., Muyzer G. and Schouten S. 2003. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high-nutrient conditions. Geochim. Cosmochim. Acta 67: 1339–1348.

    Google Scholar 

  • Volkman J.K. 1986. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9: 83–99.

    Google Scholar 

  • Volkman J.K., Barrett S.M., Dunstan G.A. and Jeffrey S.W. 1992. C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org. Geochem. 18: 131–138.

    Google Scholar 

  • von Grafenstein U., Erlenkeuser H., Muller J., Jouzel J. and Johnson S. 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dynam. 14: 73–81.

    Google Scholar 

  • Walker I.R., Mott R.J. and Smol J.P. 1991. Allerød-Younder-Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.

    Google Scholar 

  • Wang Y. and Huang Y. 2001. Hydrogen isotope fractionation of low molecular weight n-alkanes during progressive vaporization. Org. Geochem. 32: 991–998.

    Google Scholar 

  • White J.W.C., Lawrence J.R. and Broecker W.S. 1994. Modeling and interpreting D/H ratios in tree rings: a test case of white pine in the northeastern United States. Geochim. Cosmochim. Acta 58: 851–862.

    Google Scholar 

  • Yang H. and Huang Y. 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Org. Geochem. 34: 413–423.

    Google Scholar 

  • Yapp C.J. and Epstein S. 1982. A reexamination of cellulose carbon-bound hydrogen δD measurements and some factors affecting plant-water D/H relationships. Geochim. Cosmochim. Acta 46: 955–965.

    Google Scholar 

  • Yu Z., and Eicher U. 1998. Abrupt climate oscillations during the last deglaciation in Central North America. Science 282: 2235–2238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Shuman, B., Wang, Y. et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. J Paleolimnol 31, 363–375 (2004). https://doi.org/10.1023/B:JOPL.0000021855.80535.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPL.0000021855.80535.13

Navigation