Skip to main content
Log in

Are Megabats Big?

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Traditionally, bats (Order Chiroptera) are divided into two suborders, Megachiroptera (“megabats”) and Microchiroptera, and this nomenclature suggests a consistent difference in body size. To test whether megabats are, in fact, significantly larger than other bats, we compared them with respect to average body mass (log transformed), using both conventional and phylogenetic statistics. Because bat phylogeny is controversial, including the position of megabats, we employed several analyses. First, we derived two generic-level topologies for 101 genera, one with megabats as the sister of all other bats (“morphological” tree), the other with megabats as the sister of one specific group of microbats, the Rhinolophoidea (“molecular” tree). Second, we used a recently published “supertree” that allowed us to analyze body mass data for 656 species. In addition, because the way body mass has evolved is generally unknown, we employed several sets of arbitrary branch lengths on both topologies, as well as transformations of the branches intended to mimic particular models of character evolution. Irrespective of the topology or branch lengths used, log body mass showed highly significant phylogenetic signal for both generic and species-level analyses (all P≤ 0.001). Conventional statistics indicated that megabats were indeed larger than other bats (P ≪ 0.001). Phylogenetic analyses supported this difference only when performed with certain branch lengths, thus demonstrating that careful consideration of the branch lengths used in a comparative analysis can enhance statistical power. A conventional Levene's test indicated that log body mass was more variable in megabats as compared with other bats (P=0.075 for generic-level data set, P ≪ 0.001 for species-level). A phylogenetic equivalent, which gauges the amount of morphospace occupied (or average minimum rate of evolution) relative to topology and branch lengths specified, indicated no significant difference for the generic analyses, but did indicate a difference for some of the species-level analyses. The ancestral bat is estimated to have been approximately 20–23 g in body mass (95% confidence interval approximately 9–51 g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

LITERATURE CITED

  • Ackerly, D. D. (2000). Taxon sampling, correlated evolution, and independent contrasts. Evolution 54: 1480-1492.

    Google Scholar 

  • Altringham, J. (1996). Bats: Biology and behavior. Oxford Univeristy Press, Oxford, UK.

    Google Scholar 

  • Barclay, M. R., and Brigham, R. (1991). Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small? Am. Nat. 137: 693-703.

    Google Scholar 

  • Bininda-Edmonds, O. R. P., Gittleman, J. L., and Steel, M. A. (2002). The (super)tree of life: Procedures, problems, and prospects. Ann. Rev. Ecol. Syst. 33: 265-289

    Google Scholar 

  • Blomberg, S. P., and Garland, T., Jr. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15: 899-910.

    Google Scholar 

  • Blomberg, S. P., Garland, T., Jr., and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717-745.

    Google Scholar 

  • Clobert, J., Garland, T., Jr., and Barbault, R. (1998). The evolution of demographic tactics in lizards: A test of some hypotheses concerning life history evolution. J. Evol. Biol. 11: 329-364.

    Google Scholar 

  • D´ýaz-Uriarte, R., and Garland, T., Jr. (1996). Testing hypotheses of correlated evolution using phylogenetically independent contrasts: Sensitivity to deviations from Brownian motion. Syst. Biol. 45: 27-47.

    Google Scholar 

  • D´ýaz-Uriarte, R., and Garland, T., Jr. (1998). Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst. Biol. 47: 654-672.

    Google Scholar 

  • Dobson, G. E. (1875). Conspectus of the suborders, families and genera of Chiroptera arranged according to their natural affinities. Ann. Mag. Nat. Hist. 16: 345-357.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125: 1-15.

    Google Scholar 

  • Fenton, M. B., Audet, D., Obrist, M. K., and Rydell, J. (1995). Signal strength, timing, and self-deafening: The evolution of echolocation in bats. Paleobiology 21: 229-242.

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H., and Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160: 712-726.

    Google Scholar 

  • Freeman, P. W. (1981). A multivariate study of the family Molossidae (Mammalia: Chiroptera): Morphology, ecology, and evolution. Fieldiana Zool. ns, no. 7.

  • Freeman, P. W. (2000). Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny. Evol. Ecol. Res. 2: 317-335.

    Google Scholar 

  • Garland, T., Jr., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265-292.

    Google Scholar 

  • Garland, T., Jr., Harvey, P. H., and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18-32.

    Google Scholar 

  • Garland, T., Jr., and Ives, A. R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346-364.

    Google Scholar 

  • Garland, T., Jr., Martin, K. L. M., and D´ýaz-Uriarte, R. (1997). Reconstructing ancestral trait values using squared-change parsimony: Plasma osmolarity at the origin of amniotes. In: Amniote Origins: Completing the Transition to Land, S. S. Sumida and K. L. M. Martin, eds., pp 425-501, Academic Press, San Diego.

    Google Scholar 

  • Garland, T., Jr., Midford, P. E., and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for conidence intervals on ancestral values. Am. Zool. 39: 374-388.

    Google Scholar 

  • Gatesy, J., and Springer, M. S. (in press). A critique of matrix representation with parsimony supertrees. In: Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, O. R. P. Bininda-Edmonds, ed., Computational Biology Series, Kluwer Academic, Dordrecht, The Netherlands.

  • Gatesy, J., Matthee, C., DeSalle, R., and Hayashi, C. Y. (2002). Resolution of a supertree/supermatrix paradox. Syst. Biol. 51: 652-664.

    Google Scholar 

  • Grafen, A. (1989). The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326: 119-156.

    Google Scholar 

  • Griffiths, T. A. (1994). Phylogenetic systematics of the slit-faced bats (Chiroptera: Nycteridae) based on hyoid and other morphology. Am. Mus. Nov. 3090: 1-17.

    Google Scholar 

  • Griffiths, T. A., Truckenbrod, A., and Spnholtz, P. J. (1992). Systematics of Megadermatid bats (Chiroptera: Megadermatidae) based on hyoid morphology. Am. Mus. Nov. 3041: 1-21.

    Google Scholar 

  • Habersetzer, J., and Storch, G. (1989). Ecology and echolocation of Eocene Messel bats. In: European Bat Research, V. Hanak, I. Horacek, and J. Gaisler, eds., pp 213-233, Charles University Press, Prague.

    Google Scholar 

  • Hand, S. J., and Kirsch, J. A. W. (1998). A southern origin for the Hipposideridae (Microchiroptera)? In: Bat Phylogeny, Morphology, Echolocation, T. H. Kunz and P. A. Racey, eds., Smithsonian Institution Press, Washington D.C.

    Google Scholar 

  • Harmon, L. J., Schulte, J. A., II, Larson, A., and Losos, J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science 301: 961-964.

    Google Scholar 

  • Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Harvey, P. H., and Rambaut, A. (1998). Phylogenetic extinction rates and comparative methodology. Proc. R. Soc. Lond. B 265: 1691-1696.

    Google Scholar 

  • Harvey, P. H., and Rambaut, A. (2000). Comparative analyses for adaptive radiations. Phil. Trans. R. Soc. Lond. B 355: 1599-1605.

    Google Scholar 

  • Hill, J. D., and J. E. Smith. (1980). Bats a natural history. Univerisity of Texas Press, Austin.

    Google Scholar 

  • Hutcheon, J. M., and Kirsch, J. A. W. (2004). Camping in a different tree: Results of molecular systematic studies of bats using DNA-DNA hybridization. J. Mamm. Evol. 11: 17-37.

    Google Scholar 

  • Hutcheon, J. M., Kirsch, J. A. W., and Pettigrew, J. D. (1998). Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Phil. Trans. R. Soc. Lond. B 353: 607-617.

    Google Scholar 

  • James, F. C. (1982). The ecological morphology of birds. Ann. Zool. Fennici 19: 265-275.

    Google Scholar 

  • Jones, G. (1994). Scaling of windbeat and echlocation pulse emission rates in bats: why are aerial insectivorous bats so small? Funct. Ecol. 8: 450-457.

    Google Scholar 

  • Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol. Rev. 77: 223-259.

    Google Scholar 

  • Kalko, E. K. V., and Condon, M. A. (1999). Echolocation, olfaction and fruit display: how bats find fruit of flagellichorous cucurbits. Funct. Ecol. 12: 364-372.

    Google Scholar 

  • Kirsch, J. A. W., Flannery, T. F., Springer, M. S., and Lapointe, F.-J. (1995). Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridization, with evidence for bat monophyly. Aust.J.Zool. 43: 395-428.

    Google Scholar 

  • Kirsch, J. A. W., Hutcheon, J. M., Byrnes, D. G. P., and Lloyd, B. D. (1998). Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNA-hybridization comparisons. J. Mamm. Evol. 5: 33-64.

    Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W., and Hutcheon, J. M. (1999). Total evidence, consensus, and bat phylogeny: A distance-based approach. Mol. Phylogenet. Evol. 11: 55-66.

    Google Scholar 

  • Lavasseur, C., Landry, P.-A., Makarenkov, V., Kirsch, J. A. W., and Lapointe, F.-J. (2003). Incomplete distance matrices, supertrees, and bat phylogeny. Mol. Phylogenet. Evol. 27: 239-246.

    Google Scholar 

  • Mack, A. L. (1993). The sizes of vertbrate-dispersed fruits: A neotropical-paleotropical comparison. Am. Nat. 142: 840-856.

    Google Scholar 

  • Marshall, A. G. (1983). Bats, flowers and fruit: Evolutionary relationships in the Old World. Biol. J. Linn. Soc. 20: 115-135.

    Google Scholar 

  • McClain, C. R., Johnson, N. A., and Rex, M. A. (2004). Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution 58: 338-348.

    Google Scholar 

  • McNab, B. K. (2003). Standard energetics of phyllostomid bats: The inadequacies of phylogenetic-contrast analyses. Comp.Biochem.Physiol. A135: 357-368.

    Google Scholar 

  • Norberg, U. M. (1990). Zoophysiology, Vol. 27, Springer-Verlag, Berlin.

    Google Scholar 

  • Norberg, U. M. (1994). Wing design, flight performance, and habitat use in bats. In: Ecological Morphology: Integrative Organismal Biology, P. C. Wainwright and S. M. Reilly, eds., pp. 205-239, University of Chicago Press, Chicago.

    Google Scholar 

  • Norberg, U. M., and Rayner, J. M. V. (1987). Ecological morphology and flight in bats (Mammalia: Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. Roy. Soc. Lond. B 316: 335-427.

    Google Scholar 

  • Pagel, M. D. (1992). A method for the analysis of comparative data. J. Theor. Biol. 156: 431-442.

    Google Scholar 

  • Pettigrew, J. D. (1991a). Wings or brain? Convergent evolution in the origins of bats. Syst. Zool. 40: 199-216

    Google Scholar 

  • Pettigrew, J. D. (1991b). A fruitful wrong hypothesis? Response to Baker, Novacek, and Simmons. Syst. Zool. 40: 231-239.

    Google Scholar 

  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Phil. Trans. R. Soc. Lond. B 325: 489-559.

    Google Scholar 

  • Pumo, D. E., Finamore, P. S., Franek, W. R., Phillips, C. J., Tarzami, S., and Balzarano, D. (1998). Complete Mitochondrial Genome of a Neotropical Fruit Bat, Artibeus jamaicensis, and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals. J. Mol. Evol. 47: 709-717.

    Google Scholar 

  • Purvis, A. (1995). A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348: 405-421.

    Google Scholar 

  • Purvis, A., and Garland, T., Jr. (1993). Polytomies in comparative analyses of continuous characters. Syst. Biol. 42: 569-575.

    Google Scholar 

  • Robbins, L. W., and Sarich, V. M. (1986). Evolutionary relationships in the family Emballonuridae (Chiroptera). J. Mamm. 69: 1-13.

    Google Scholar 

  • Schluter, D., Price, T., Mooers, A. O., and Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699-1711.

    Google Scholar 

  • Silva, M., and Downing, J. (1995). The CRC Handbook of Mammalian Body Masses, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Simmons, N. B. (1994). The case for chiropteran monophyly. Am. Mus. Nov. 3103: 1-54.

    Google Scholar 

  • Simmons, N. B., and Geisler, J. B. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Has-sianycteris, andPalaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235: 1-182.

    Google Scholar 

  • Smith, J. D. (1976). Chiropteran evolution. In: Biology of Bats of the New World Family Phyllostomidae. Part I, R. J. Baker, J. K. Jones Jr., and D. C. Carter, eds., pp. 49-69, Special Publication of the Museum, Texas Tech, Lubbock.

    Google Scholar 

  • Smith, F. A., Lyons, S. K., Morgan Ernest, S. K., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P. (2003). Body mass of Late Quaternary mammals. Ecology 84: 3403. (Ecological Archives E084-E094)

    Google Scholar 

  • Speakman, J. R. (2001). The evolution of flight and echolocation in bats: Another leap in the dark. Mamm. Rev. 31: 111-130.

    Google Scholar 

  • Springer, M. S., Hollar, L. J., and Kirsch, J. A. W. (1995). Phylogeny, molecules versus morphology, and rates of character evolution among fruitbats (Chiroptera: Megachiroptera). Aust. J. Zool. 43: 557-582.

    Google Scholar 

  • Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W. (2001). Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. U.S.A. 98: 6241-6246.

    Google Scholar 

  • Teeling, E. C., Madsen, O., Murphy, W. J., Springer, M. S., and O'Brien, S. J. (2003). Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats. Mol. Phylogenet. Evol. 28: 308-319.

    Google Scholar 

  • Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Nat. Acad. Sci. U.S.A. 99: 1431-1436.

    Google Scholar 

  • Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188-192.

    Google Scholar 

  • Thies, W., Kalko, E. K. V., and Schnitzler, H.-U. (1998). The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea feeding on Piper. Behav. Ecol. Sociobiol. 42: 397-409.

    Google Scholar 

  • Van Cakenberghe, V., Herrel, A., and Aguirre, L. F. (2002). Evolutionary relationships between cranial shape and diet in bats (Mammalia: Chiroptera). In: Topics in Functional and Ecological Vertebrate Morphology, P. Aerts, K. D'Août, A. Herrel, and R. Van Damme, eds., pp. 205-236, Shaker Publishing, Maastricht, The Netherlands.

    Google Scholar 

  • Van Den Bussche, R. A., and Hoofer, S. R. (2004). Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate outgroup taxa. J. Mamm. 85: 321-220.

  • von Helverson, D., and von Helverson, O. (1999). Acoustic guide in bat pollinated flower. Nature 398: 759-760.

    Google Scholar 

  • Vanhooydonck, B., and Van Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1: 785-805.

    Google Scholar 

  • Weins, J. J. (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52: 528-538.

    Google Scholar 

  • Wetterer, A. L., Rockman, M. V., and Simmons, N. B. (2000). Phylogeny of phyllostomid bats (Mammalia: Chiroptera): Data from diverse morphological systems, sex chromosomes, and restriction sites. Bull. Am. Mus. Nat. Hist. 248: 1-200.

    Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (eds.). (1993). Mammal Species of the World, Smithsonian Institute Press, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutcheon, J.M., Garland, T. Are Megabats Big?. Journal of Mammalian Evolution 11, 257–277 (2004). https://doi.org/10.1023/B:JOMM.0000047340.25620.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMM.0000047340.25620.89

Navigation