Skip to main content
Log in

Acquired and Partially De Novo Synthesized Pyrrolizidine Alkaloids in Two Polyphagous Arctiids and the Alkaloid Profiles of Their Larval Food-Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The profiles of pyrrolizidine alkaloids (PAs) in the two highly polyphagous arctiids Estigmene acrea and Grammia geneura and their potential PA sources in southeastern Arizona were compiled. One of four species of Boraginaceae, Plagiobothrys arizonicus, contained PAs; this is the first PA record for this plant species. The principle PA sources are Senecio longilobus (Asteraceae) and Crotalaria pumila (Fabaceae). The known PA pattern of S. longilobus was extended; the species was found to contain six closely related PAs of the senecionine type. Three novel PAs of the monocrotaline type, named pumilines A–C, were isolated and characterized from C. pumila, a species not studied before. The pumilines are the major PAs in the seeds, while in the vegetative organs they are accompanied by the simple necine derivatives supinidine and as the dominant compound subulacine (1β,2β-epoxytrachelanthamidine). In both plant species, the PAs are stored as N-oxides, except C. pumila seeds, which accumulate the free bases. Great variation in PA composition was observed between local populations of C. pumila. The PA profiles were established for larvae and adults of E. acrea that as larvae had fed on an artificial diet supplemented with crotalaria-powder and of G. geneura fed with S. longilobus. In both experiments, the larvae had a free choice between the respective PA source and diet or food plants free of PAs. The profiles compiled for the two species reflect the alkaloid profiles of their PA sources with one exception, subulacine could never be detected in E. acrea. Besides acquired PAs, insect PAs synthesized from acquired necine bases and necic acids of insect origin were detected in the two arctiid species. These insect PAs that do not occur in the larval food sources accounted for some 40–70% (E. acrea) and 17–37% (G. geneura) of total PAs extracted from the insects. A number of novel insect PAs were identified. Plant-acquired and insect PAs were found to accumulate as N-oxides. The results are discussed in relation to specific biochemical, electrophysiological, and behavioral mechanisms involved in PA sequestration by arctiids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aldrich, J. R., Schaefer, P. W., Oliver, J. E., Puapoomchareon, P., Lee, C. J., and van der Meer, R. K. 1997. Biochemistry of the exocrine secretion from gypsy moth caterpillars (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 90:75–82.

    Google Scholar 

  • Aplin, R. T., Benn, M. H., and Rothschild, M. 1968. Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748.

    Google Scholar 

  • Aplin, R. T., and Rothschild, M. 1972. Poisonous alkaloids in the body tissue of the garden tiger moth (Arctia caja L.) (Lepidoptera) and the cinnabar moth (Tyria jacobaeae L.), pp. 579–595, in A. De Vries and E. Kochva (eds.). Toxins of Animal and Plant Origin. Gordon and Breach, New York.

    Google Scholar 

  • Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002a. A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acraea. J. Comp. Physiol. A 188:715–723.

    Google Scholar 

  • Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002b. A taste receptor neurone dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous artiid caterpillars. Physiol. Entomol. 27:1–10.

    Google Scholar 

  • Bernays, E. A., Chapman, R. F., Lamunyon, C. W., and Hartmann, T. 2003a. Taste receptors for pyrrolizidine alkaloids in a monophagous caterpillar. J. Chem. Ecol. 29:1709–1722.

    Google Scholar 

  • Bernays, E. A., Rodrigues, D., Chapman, R. F., Singer, M. S., and Hartmann, T. 2003b. Loss of gustatory responses to pyrrolizidine alkaloids after their extensive ingestion in the polyphagous caterpillar, Estigmene acrea. J. Exp. Biol. 206:4487–4496.

    Google Scholar 

  • Bernays, E. A., Hartmann, T., and Chapman, R. F. 2004. Gustatory sensitivity to pyrrolizidine alkaloids in the Senecio specialist, Tyria jacobaeae (Lepidoptera, Arctiidae). Physiol. Entomol. 29:1–6.

    Google Scholar 

  • Bogner, F., and Eisner, T. 1991. Chemical basis of egg cannibalism in a caterpillar (Utetheisa ornatrix). J. Chem. Ecol. 17:2063–2075.

    Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26.

    Google Scholar 

  • Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: Exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:165–185.

    Google Scholar 

  • Chang, A., and Hartmann, T. 1998. Solubilization and characterization of a senecionine N-oxygenase from Crotalaria scassellatii seedlings. Phytochemistry 49:1859–1866.

    Google Scholar 

  • Conner, W. E., Roach, B., Benedict, E., Meinwald, J., and Eisner, T. 1990. Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth Utetheisa ornatrix. J. Chem. Ecol. 16:543–552.

    Google Scholar 

  • Cooper, R. A., Bowers, R. J., Beckham, C. J., and Huxtable, R. J. 1996. Preparative separation of pyrrolizidine alkaloids by high-speed counter-current chromatography. J. Chromatogr. A 732:43–50.

    Google Scholar 

  • Culvenor, C. C. J., O'Donovan, G. M., and Smith, L. W. 1967. Alkaloids of Crotalaria trifoliastrum Willd. and C. aridicola Domin. Aust. J. Chem. 20:757–768.

    Google Scholar 

  • Dussourd, D. E., Harvis, C. A., Meinwald, J., and Eisner, T. 1991. Pheromonal advertisement of a nuptial gift by a male moth Utetheisa ornatrix. Proc. Natl. Acad. Sci. U.S.A. 88:9224–9227.

    Google Scholar 

  • Edgar, J. A., Culvenor, C. C. J., Cockrum, P. A., Smith, L. W., and Rothschield, M. 1980. Callimorphine: Identification and synthesis of the cinnabar moth “metabolite”. Tetrahedron Lett. 21:1383–1384.

    Google Scholar 

  • Ehmke, A., Rahier, M., Pasteels, J. M., Theuring, C., and Hartmann, T. 1999. Sequestration, maintenance, and tissue distribution of pyrrolizidine alkaloid N-oxides in larvae of two Oreina species. J. Chem. Ecol. 25:2385–2395.

    Google Scholar 

  • Ehmke, A., Witte, L., Biller, A., and Hartmann, T. 1990. Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L. Z. Naturforsch. C 45:1185–1192.

    Google Scholar 

  • Ferguson, D. C. 1985. Contributions toward reclassification of the world genera of the tribe Arctiini, part 1—Introduction and a revision of the Neoarctia-Grammia group (Lepidoptera; Arctiidea; Arctiinae). Entomography 3:181–273.

    Google Scholar 

  • Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495.

    Google Scholar 

  • Hartmann, T., Biller, A., Witte, L., Ernst, L., and Boppré, M. 1990. Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem. Syst. Ecol. 18:549–554.

    Google Scholar 

  • Hartmann, T., and Dierich, B. 1998. Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: Biological need or coincidence? Planta 206:443–451.

    Google Scholar 

  • Hartmann, T. and Ober, D. 2000. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores, pp. 207–244, in F. J. Leeper and J. C. Vederas (eds.). Biosynthesis—Aromatic Polyketides, Isoprenoids, Alkaloids. Topics in Current Chemistry, Vol. 209. Springer, Berlin.

    Google Scholar 

  • Hartmann, T., Theuring, C., Schmidt, J., Rahier, M., and Pasteels, J. M. 1999. Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J. Insect Physiol. 45:1085–1095.

    Google Scholar 

  • Hartmann, T., Theuring, C., Witte, L., and Pasteels, J. M. 2001. Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 31:1041–1056.

    Google Scholar 

  • Hartmann, T., Theuring, C., Witte, L., Schulz, S., and Pasteels, J. M. 2003. Biochemical processing of plant acquired pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 33:515–523.

    Google Scholar 

  • Hartmann, T. and Toppel, G. 1987. Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1644.

    Google Scholar 

  • Hartmann, T. and Witte, L. 1995. Pyrrolizidine alkaloids: Chemical, biological and chemoecological aspects, pp. 155–233, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 9. Pergamon, Oxford.

    Google Scholar 

  • Johnson, A. E., Molyneux, R. J., and Merrill, G. B. 1985. Chemistry of toxic range plants variation in pyrrolizidine alkaloid content of Senecio, Amsinckia and Crotalaria species. J. Agric. Food Chem. 33:50–55.

    Google Scholar 

  • Krasnoff, S. B. and Roelofs, W. L. 1989. Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa, and Pyrrharctia isabella (Lepidoptera: Arctiidae). J. Chem. Ecol. 15:1077–1093.

    Google Scholar 

  • Lindigkeit, R., Biller, A., Buch, M., Schiebel, H. M., Boppré, M., and Hartmann, T. 1997. The two faces of pyrrolizidine alkaloids: The role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur. J. Biochem. 245:626–636.

    Google Scholar 

  • Naumann, C., Hartmann, T., and Ober, D. 2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc. Natl. Acad. Sci. U.S.A. 99:6085–6090.

    Google Scholar 

  • Nickisch-Rosenegk, E. and Wink, M. 1993. Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae). J. Chem. Ecol. 19:1889–1903.

    Google Scholar 

  • Pasteels, J. M., Termonia, A., Windsor, D., Witte, L., Theuring, C., and Hartmann, T. 2001. Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120.

    Google Scholar 

  • Pasteels, J. M., Theuring, C., Witte, L., and Hartmann, T. 2003. Sequestration and metabolism of pro-toxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into the defensive secretions of adults. J. Chem. Ecol. 29:337–355.

    Google Scholar 

  • Ray, A. C., Williams, H. J., and Reagor, J. C. 1987. Pyrrolizidine alkaloids from Senecio longilobus and Senecio glabellus. Phytochemistry 26:2431–2433.

    Google Scholar 

  • Robinson, G. S., Ackery, P. R., Kitchin, I. J., Beccaloni, G. W., and Hernández, L. M. 2002. Hosts—A database of the host plants of the world's Lepidoptera. Retrieved from www.nhm.ac.uk/entomology/hostplants/

  • Rothschild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P., and Lees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol. J. Linn. Soc. 12:305–326.

    Google Scholar 

  • Schneider, D. 1987. The strange fate of pyrrolizidine alkaloids, pp. 123–142, in R. F. Chapman, E. A. Bernays, and J. G. Stoffolano (eds.). Perspectives in Chemoreception and Behavior. Springer, Berlin.

    Google Scholar 

  • Schulz, S. 1998. Insect-plant interactions—Metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur. J. Org. Chem. 13–20.

  • Schulz, S., Francke, W., Boppré, M., Eisner, T., and Meinwald, J. 1993. Insect pheromone biosynthesis: Stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc. Natl. Acad. Sci. U.S.A. 90:6834–6838.

    Google Scholar 

  • Singer, M. S. 2000. Ecological maintenance of food-mixing in the woolly bear caterpillar, Grammia geneura (Strecker) (Lepidoptera: Arctiidae). PhD Dissertation, University of Arizona.

  • Stermitz, F. R. and L'Empereur, K. M. 1988. Identity of “subulacine N-oxide” with 1β,2β-epoxy-1α-hydroxymethyl-8α-pyrrolizidine. Tetrahedron Lett. 29:4943–4944.

    Google Scholar 

  • Stermitz, F. R., Pass, M. A., Kelley, R. B., and Liddell, J. R. 1993. Pyrrolizidine alkaloids from Cryptantha species. Phytochemistry 33:383–387.

    Google Scholar 

  • Toppel, G., Witte, L., and Hartmann, T. 1988. N-oxidation and degradation of pyrrolizidine alkaloids during germination of Crotalaria scassellatii. Phytochemistry 27:3757–3760.

    Google Scholar 

  • von Borstel, K., Witte, L., and Hartmann, T. 1989. Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, Senecio vernalis and their hybrids. Phytochemistry 28:1635–1638.

    Google Scholar 

  • Vrieling, K., De, V. H., and Van, W. C. A. M. 1993. Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144.

    Google Scholar 

  • Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.

    Google Scholar 

  • Williams, M. C. and Molyneux, R. J. 1987. Occurrence, concentration, and toxicity of pyrrolizidine alkaloids in Crotalaria seeds. Weed Sci. 35:476–481.

    Google Scholar 

  • Wink, M. and Schneider, D. 1988. Carrier-mediated uptak of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid exploiting moth Creatonotos. Naturwissenschaften 75:524–225.

    Google Scholar 

  • Witte, L., Ernst, L., Adam, H., and Hartmann, T. 1992. Chemotypes of two pyrrolizidine alkaloid-containing Senecio spp. Phytochemistry 31:559–566.

    Google Scholar 

  • Witte, L., Rubiolo, P., Bicchi, C., and Hartmann, T. 1993. Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography-mass spectrometry. Phytochemistry 32:187–196.

    Google Scholar 

  • Yamamoto, R. T. 1969. Mass rearing of the tobacco hornworm II. Larval rearing and pupation. J. Econ. Entomol. 62:1427–1431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, T., Theuring, C., Beuerle, T. et al. Acquired and Partially De Novo Synthesized Pyrrolizidine Alkaloids in Two Polyphagous Arctiids and the Alkaloid Profiles of Their Larval Food-Plants. J Chem Ecol 30, 229–254 (2004). https://doi.org/10.1023/B:JOEC.0000017975.16399.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000017975.16399.c3

Navigation