Skip to main content
Log in

Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Carbon-13 and nitrogen-15 signals of fully isotope-labeled 15-residue peptide, glycinated mastoparan-X, in a solid state were assigned by two- and three-dimensional NMR experiments under magic-angle spinning conditions. Intra-residue spin connectivities were obtained with multidimensional correlation experiments for C′–Cα–Cβ and N–Cα–Cβ. Sequence specific assignments were performed with inter-residue Cα–Cα and N–CαCβ correlation experiments. Pulse sequences for these experiments have mixing periods under recoupled zero- and double-quantum 13C–13C and 15N–13C dipolar interactions. These correlation spectra allowed the complete assignments of 13C and 15N backbone and 13Cβ signals. Chemical shift analysis of the 13C and 15N signals based on empirical and quantum chemical databases for proteins indicated that the backbone between residues 3 and 14 forms α-helix and residue 2 has extended conformation in the solid state. This structure was compared with the G-protein- and membrane-bound structures of mastoparan-X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrof, N.S. and Griffin, R.G. (2002) J. Magn. Reson., 158, 157–163.

    Google Scholar 

  • Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J. and Tycko, R. (2000a) Biochemistry, 39, 13748–13759.

    Google Scholar 

  • Balbach, J.J., Yang, J., Weliky, D.P., Steinbach, P.J., Tugarinov, V., Anglister, J. and Tycko, R. (2000b) J. Biomol. NMR, 16, 313–327.

    Google Scholar 

  • Baldus, M. (2002) Progr. NMR Spectrosc., 41, 1–47.

    Google Scholar 

  • Baldus, M., Petkova, A.T., Herzfeld, J. and Griffin, R.G. (1998) Mol. Phys., 95, 1197–1207.

    Google Scholar 

  • Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V. and Griffin, R.G. (1995) J. Chem. Phys., 103, 6951–6958.

    Google Scholar 

  • Bennett, A.E., Rienstra, C.M., Griffiths, J.M., Zhen, W., Lansbury Jr., P.T. and Griffin, R.G. (1998) J. Chem. Phys., 108, 9463–9479.

    Google Scholar 

  • Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, WCB/McGraw-Hill, Boston, MA.

    Google Scholar 

  • Caldarelli, S. and Emsley, L. (1998) J. Magn. Reson., 130, 233–237.

    Google Scholar 

  • Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K. and Oschkinat, H. (2002) Nature, 420, 98–102.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Academic Press, San Diego, CA.

    Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) J. Am. Chem. Soc., 117, 5179–5197.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289–302.

    Google Scholar 

  • de Groot, H.J.M. (2000) Curr. Opin. Struct. Biol., 10, 593–600.

    Google Scholar 

  • Detken, A., Hardy, E.H., Ernst, M., Kainosho, M., Kawakami, T., Aimoto, S. and Meier, B.H. (2001) J. Biomol. NMR, 20, 203–221.

    Google Scholar 

  • Egorova-Zachernyuk, T.A., Hollander, J., Fraser, N., Gast, P., Hoff, A.J., Cogdell, R., de Groot, H.J.M. and Baldus, M. (2001) J. Biomol. NMR, 19, 243–253.

    Google Scholar 

  • Foster, M.P., Wuttke, D.S., Clemens, K.R., Jahnke, W., Radhakrishnan, I., Tennant, L., Reymond, M., Chung. J. and Wright, P.E. (1998) J. Biomol. NMR, 12, 51–71.

    Google Scholar 

  • Fujiwara, T., Khandelwal, P. and Akutsu, H. (2000) J. Magn. Reson., 145, 73–83.

    Google Scholar 

  • Fujiwara, T., Shimomura, T., Ohigashi, Y. and Akutsu, H. (1998) J. Chem. Phys., 109, 2380–2393.

    Google Scholar 

  • Fujiwara, T., Sugase, K., Kainosho, M., Ono, A., Ono, A.(M.) and Akutsu, H. (1995) J. Am. Chem. Soc., 117, 11351–11352.

    Google Scholar 

  • Griffin, R.G. (1998) Nat. Struct. Biol., 5, 508–512.

    Google Scholar 

  • Hayashi, S. and Hayamizu, K. (1991) Bull. Chem. Soc. Jpn., 64, 685–687.

    Google Scholar 

  • Higashijima, T., Burnier, J. and Ross, E.M. (1990) J. Biol. Chem., 265, 14176–14186.

    Google Scholar 

  • Higashijima, T., Wakamatsu, K., Takemitsu, M., Fujino, M., Nakajima, T. and Miyazawa, T. (1983) FEBS Lett., 152, 227–230.

    Google Scholar 

  • Hohwy, M., Rienstra, C.M. and Griffin, R.G. (2002) J. Chem. Phys., 117, 4973–4987.

    Google Scholar 

  • Hohwy, M., Rienstra, C.M., Jaroniec, C.P. and Griffin, R.G. (1999) J. Chem. Phys., 110, 7983–7991.

    Google Scholar 

  • Hong, M. (1999) J. Biomol. NMR, 15, 1–14.

    Google Scholar 

  • Hong, M. and Jakes, K. (1999) J. Biomol. NMR, 14, 71–74.

    Google Scholar 

  • Hughes, E. and Middleton, D.A. (2003) J. Biol. Chem., 278, 20835–20842.

    Google Scholar 

  • Iwadate, M,. Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199–211.

    Google Scholar 

  • Kohno, T., Kusunoki, H., Sato, K. and Wakamatsu, K. (1998) J. Biomol. NMR, 12, 109–121.

    Google Scholar 

  • Kusunoki, H., Wakamatsu, K., Sato, K., Miyazawa, T. and Kohno, T. (1998) Biochemistry, 37, 4782–4790.

    Google Scholar 

  • LeMaster, D.M. and Kushlan, D.M. (1996) J. Am. Chem. Soc., 118, 9255–9264.

    Google Scholar 

  • Lindberg, M., Jarvet, J. and Gräslund, A. (2001) Biochemistry, 40, 3141–3149.

    Google Scholar 

  • Luca, S., Filippov, D.V., van Boom, J.H., Oschkinat, H., de Groot, H.J.M. and Baldus, M. (2001) J. Biomol. NMR, 20, 325–331.

    Google Scholar 

  • Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) Pure Appl. Chem., 70, 117–142.

    Google Scholar 

  • Matsuki, Y., Akutsu, H. and Fujiwara, T. (2003) J. Magn. Reson., 162, 54–66.

    Google Scholar 

  • Matsuzaki, K., Yoneyama, S., Murase, O. and Miyajima, K. (1996) Biochemistry, 35, 8450–8456.

    Google Scholar 

  • McDermott, A., Polenova, T., Bockmann, A., Zilm, K.W., Paulsen, E. K., Martin, R.W. and Montelione, G.T. (2000) J. Biomol. NMR, 16, 209–219.

    Google Scholar 

  • Metz, G., Wu, X. and Smith, S.O. (1994) J. Magn. Reson. A, 110, 219–227.

    Google Scholar 

  • Nomura, K., Takegoshi, K., Terao, T., Uchida, K. and Kainosho, M. (2000) J. Biomol. NMR, 17, 111–123.

    Google Scholar 

  • Pauli, J., Baldus, M., van Rossum, B., de Groot, H. and Oschkinat, H. (2001) ChemBioChem, 2, 272–281.

    Google Scholar 

  • Pauli, J., van Rossum, B., Förster, H., Huub, J.M., de Groot, H. and Oschkinat, H. (2000) J. Magn. Reson., 143, 411–416.

    Google Scholar 

  • Petkova, A.T., Baldus, M., Belenky, M., Hong, M., Griffin, R.G. and Herzfeld, J. (2003) J. Magn. Reson., 160, 2–13.

    Google Scholar 

  • Ponder, J.W. and Richards, F.M. (1987) J. Comput. Chem., 8, 1016–1024.

    Google Scholar 

  • Rienstra, C.M., Hohwy, M., Hong, M. and Griffin, R.G. (2000) J. Am. Chem. Soc., 122, 10979–10990.

    Google Scholar 

  • Rienstra, C.M., Tucker-Kellogg, L., Jaroniec, C.P., Hohwy, M., Reif, B., McMahon, M.T., Tidor, B., Lozano-Pérez, T. and Griffin, R.G. (2002) Proc. Natl. Acad. Sci. USA, 99, 10260–10265.

    Google Scholar 

  • Saito, H. and Ando, I. (1989) Annu. Rep. NMR Spectrosc., 21, 209–290.

    Google Scholar 

  • Sayle, R.A. and Milner-White, E.J. (1995) Trends Biochem. Sci., 20, 374–376.

    Google Scholar 

  • Straus, S.K., Bremi, T. and Ernst, R.R. (1996) Chem. Phys. Lett., 262, 709–715.

    Google Scholar 

  • Straus, S.K., Bremi, T. and Ernst, R.R. (1998) J. Biomol. NMR, 12, 39–50.

    Google Scholar 

  • Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329–335.

    Google Scholar 

  • Wakamatsu, K., Okada, A., Miyazawa, T., Ohya, M. and Higashijima, T. (1992) Biochemistry, 31, 5654–5660.

    Google Scholar 

  • Whiles, J.A., Brasseur, R., Glover, K.J., Melacini, G., Komives, E.A. and Vold, R.R. (2001) Biophys. J., 80, 280–293.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) Meth. Enzymol., 239, 363–391.

    Google Scholar 

  • Xu, X-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321–333.

    Google Scholar 

  • Xu, X-P. and Case, D.A. (2002) Biopolymers, 65, 408–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Todokoro, Y., Yanagishita, H. et al. Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning. J Biomol NMR 28, 311–325 (2004). https://doi.org/10.1023/B:JNMR.0000015377.17021.b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000015377.17021.b0

Navigation