Skip to main content
Log in

Mechanical and thermal properties of physical vapour deposited alumina films Part II Elastic, plastic, fracture, and adhesive behaviour

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two mechanical characterization techniques were used to deduce the elastic, plastic, fracture, and adhesive properties of non-reactive physical vapour deposited alumina films of varying thickness on Al2O3-TiC substrates deposited at two different substrate biases. Depth-sensing indentation at both nano- and macroscopic load scales was used to determine the elastic and plastic properties of the films. Gravity-loaded Vickers indentation was performed to examine the fracture properties of the film and of the interface. Novel fracture mechanics models were developed to describe indentation-induced film fracture by channel cracks and indentation-induced interface delamination. The former model was used to determine the film toughness and the latter model was used to deduce the interfacial fracture resistance of the films and correctly predicted the effect of changing film thickness. Both models described the measured crack lengths with indentation load well and were used to identify the transition from radial and lateral cracking to channel and interfacial cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. THURN and R. F. COOK, J. Mater. Sci. (this volume).

  2. J. THURN and R. F. COOK, J. Mater. Res. 17(2002) 2679.

    Google Scholar 

  3. R. F. COOK and G. M. PHARR, J. Amer. Ceram. Soc. 73(1990) 787.

    Google Scholar 

  4. W. C. OLIVER and G. M. PHARR, J. Mater. Res. 7(1992) 1564.

    Google Scholar 

  5. Y. SUN, T. BELL and S. ZHENG, Thin Solid Films 258(1995)198.

    Article  Google Scholar 

  6. J. L. HAY, M. E. O'HERN and W. C. OLIVER, "Mat. Res. Soc. Symp. Proc" (MRS, Pittsburgh PA, 1998) Vol. 522, p. 27.

    Google Scholar 

  7. W. ZHANG and G. SUBHASH, Int. J. Solids Struc. 38(2001) 5893.

    Article  Google Scholar 

  8. B. R. LAWN, A. G. EVANS and D. B. MARSHALL, J. Amer. Ceram. Soc. 63(1980) 574.

    Google Scholar 

  9. M. T. LAUGIER, ibid. 68(1985) C–51.

    Google Scholar 

  10. R. F. COOK, Ph.D. Thesis, School of Physics, University of New South Wales, Australia, 1985.

  11. B. LAWN, "Fracture of Brittle Solids," 2nd ed. (Cambridge University Press, Cambridge, 1993) p. 31, 55.

    Google Scholar 

  12. A. GOLDSTEIN and A. SINGURINDI, J. Amer. Ceram. Soc. 83(2000) 1530.

    Google Scholar 

  13. I. Y. KONYASHIN, J. Vac. Sci. Technol. A 14(1996) 447.

    Article  Google Scholar 

  14. R. F. COOK, J. Amer. Ceram. Soc. 77(1994) 1263.

    Google Scholar 

  15. H. TADA, P. C. PARIS and G. R. IRWIN, "The Stress Analysis of Cracks Handbook" (Del Research Corp., St. Louis, MO, 1973) p. 2.22.

    Google Scholar 

  16. R. HILL, "The Mathematical Theory of Plasticity" (Oxford University Press, London, 1950) p. 106.

    Google Scholar 

  17. M. D. THOULESS, J. Vac. Sci. Technol. A 9(1991) 2510.

    Article  Google Scholar 

  18. J. W. HUTCHINSON and Z. SUO, Adv. Appl. Mech. 29(1992) 63.

    Google Scholar 

  19. D. B. MARSHALL, B. R. LAWN and A. G. EVANS, J. Amer. Ceram. Soc. 65(1982) 561.

    Google Scholar 

  20. M. D. THOULESS, Acta Metall. 36(1988) 3131.

    Article  Google Scholar 

  21. A. A. GRIFFITH, Phil. Trans. Roy. Soc. London Ser. A 221(1921) 163.

    Google Scholar 

  22. D. B. MARSHALL and A. G. EVANS, J. Appl. Phys. 56(1984) 2632.

    Article  Google Scholar 

  23. A. G. EVANS and J. W. HUTCHINSON, Int. J. Solids Struct. 20(1984) 455.

    Google Scholar 

  24. C. ROSSINGTON, A. G. EVANS, D. B. MARSHALL and B. T. KHURI-YAKUB, J. Appl. Phys. 56(1984) 2639.

    Article  Google Scholar 

  25. M. D. KRIESE, W. W. GERBERICH and N. R. MOODY, J. Mater. Res. 14(1999) 3019.

    Google Scholar 

  26. J. THURN and R. F. COOK, J. Mater. Res. 17(2002) 1143.

    Google Scholar 

  27. J. MENCÍK, D. MUNZ, E. QUANDT, E. R. WEPPELMANN and M. V. SWAIN, ibid. 12(1997) 2475.

    Google Scholar 

  28. T. Y. TSUI and G. M. PHARR, ibid. 14(1999) 292.

    Google Scholar 

  29. T. Y. TSUI, J. VLASSAK and W. D. NIX, ibid. 14(1999) 2196.

    Google Scholar 

  30. Y. XU, Y. TSAI, D. W. ZHENG, K. N. TU, C. W. ONG, C. L. CHOY, B. ZHAO, Q.-Z. LIU and M. BRONGO, J. Appl. Phys. 88(2000) 5744.

    Article  Google Scholar 

  31. Y. TOIVOLA, J. THURN and R. F. COOK, J. Electrochem. Soc. 149(2002) F9.

    Article  Google Scholar 

  32. J. B. PETHICA, R. HUTCHINGS and W. C. OLIVER, Phil. Mag. A 48(1983) 593.

    Google Scholar 

  33. M. F. DOERNER and W. D. NIX, J. Mater. Res. 1(1986) 601.

    Google Scholar 

  34. T. C. CHOU, T. G. NIEH, S. D. MCADAMS and G. M. PHARR, Scr. Metall. et Mater. 25(1991) 2203.

    Article  Google Scholar 

  35. J. THURN and R. F. COOK, J. Appl. Phys. 91(2002) 1988.

    Article  Google Scholar 

  36. J. W. HUTCHINSON, M. D. THOULESS and E. G. LINIGER, Acta Metall. Mater. 40(1992) 295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurn, J., Cook, R.F. Mechanical and thermal properties of physical vapour deposited alumina films Part II Elastic, plastic, fracture, and adhesive behaviour . Journal of Materials Science 39, 4809–4819 (2004). https://doi.org/10.1023/B:JMSC.0000035319.81486.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000035319.81486.62

Keywords

Navigation