Skip to main content
Log in

Thermophysical Properties of 1,1,1,3,3-Pentafluorobutane (R365mfc)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents an experimental study on various thermophysical properties of a new fluoroalkane, 1,1,1,3,3-pentafluorobutane (R365mfc). The thermal conductivity of R365mfc was measured in the liquid phase near saturation conditions at temperatures between 263 and 333 K using a parallel plate instrument with an uncertainty of less than ±5%. For the measurement of the saturated liquid density between 273 and 353 K, a vibrating tube instrument was used. The uncertainty of the density measurements is less than ±0.1%. In addition, experimental data have been obtained for R365mfc under saturation conditions over a wide temperature range from about 253 to 460 K using light scattering techniques. Light scattering from the bulk fluid has been applied for measuring both the thermal diffusivity and the sound speed in the liquid and vapor phases. Light scattering by surface waves on a horizontal liquid–vapor interface has been used for the simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With the light scattering techniques, uncertainties of less than ±1.0, ±0.5, ±1.0, and ±1.2% have been achieved for the thermal diffusivity, the sound speed, the kinematic viscosity, and the surface tension, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Solvay Fluor and Derivate GmbH, Solkane_365/227 Non Flammable Blends-Liquid Foaming Agent for Plastics, Hannover (2002).

  2. H. Krähling and L. Zipfel, Proc.Polyurethanes Conference (Boston, 2000), pp.23–31.

  3. R. Heidelck, H. Kruse, and H.-J. Laue, Wärmepumpen in Gewerbe und Industrie-Ein Ñ-berblick, Informationszentrum Wärmepumpen und Kältetechnik e.V., Hannover (2000).

  4. D.S. Jung and D. Didion, Int.J.Refrig. 13:243 (1990).

    Google Scholar 

  5. R. Heide and J. Schenk, in Bestimmung der Transportgrößenvon HFKW, Bericht zum AiF-Forschungsvorhaben Nr.10044B, Heft 1:Viskosität und Oberflächen spannung, Forschungsrat Kälte technik e.V., ed.(Frankfurtam Main, 1996).

  6. N. Hoffmann, K. Spindler, and E. Hahne, in Bestimmung der Transportgrößen von HFKW, Bericht zum AiF-Forschungsvorhaben Nr.10044B, Heft 2: Wärme leitfähigkeit, Forschungsrat Kältetechnik e.V., ed.(Frankfurt am Main, 1996).

  7. X. Gao, M.J. Assael, Y. Nagasaka, and A. Nagashima, Int.J.Thermophys. 21:23 (2000).

    Google Scholar 

  8. A.P. Fröba, S. Will, and A. Leipertz, Int.J.Thermophys. 22:1349 (2001).

    Google Scholar 

  9. I.M. Marrucho, N.S. Oliveira, and R. Dohrn, J.Chem.Eng.Data 47:554 (2002).

    Google Scholar 

  10. K. Börner, private communication,Technical Service Foam, Solvay Fluor and Derivate GmbH, Hannover (2003).

    Google Scholar 

  11. M.L.V. Ramires, C.A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M.J. Assael, and W.A. Wakeham, J.Phys.Chem.Ref.Data 24:1377 (1995).

    Google Scholar 

  12. N.B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States (Hemisphere, Washington, D.C., 1983).

    Google Scholar 

  13. K. Krzeminski, A.P. Fröba, and A. Leipertz, submitted for publication to Chemie Ingeni-eur Technik (2003).

  14. B.J. Berne and R. Pecora, Dynamic Light Scattering (Robert E.Krieger, Malabar, 1990).

    Google Scholar 

  15. B.Chu, Laser Light Scattering (Academic Press, New York, 1991).

    Google Scholar 

  16. J.N. Shaumeyer, R.W. Gammon, and J.V. Sengers, in Measurement of the Transport Properties of Fluids, W.A. Wakeham, A. Nagashima, and J.V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), pp.197–213.

    Google Scholar 

  17. A. Leipertz and A.P. Fröba, in Diffusion in Condensed Matter-Methods, Materials, Models, P.Heitjans and J.Kärger, eds. (Springer, Berlin, 2004), pp.571–611.

    Google Scholar 

  18. S. Will, A.P. Fröba, and A. Leipertz, Int.J.Thermophys. 19:403 (1998).

    Google Scholar 

  19. A.P. Fröba, S. Will, and A. Leipertz, Fluid Phase Equilib. 161:337 (1999).

    Google Scholar 

  20. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

    Google Scholar 

  21. A.P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Oberflächenlichtstreuung, Dr.-Ing.Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2002).

    Google Scholar 

  22. E.H. Lucassen-Reynders and J. Lucassen, Advan.Colloid Interface Sci. 2:347 (1969).

    Google Scholar 

  23. A.P. Fröba and A. Leipertz, Int.J.Thermophys. 24:895 (2003).

    Google Scholar 

  24. www.solvay-.uor.com/docroot/.uor/static les/attachments/druck 365 e.pdf

  25. C. Meurer, private communication, Technical Services Refrigerants, Solvay Fluor and Derivate GmbH, Hannover (2003).

    Google Scholar 

  26. K. Kraft, M.M. Lopes, and A. Leipertz, Int.J.Thermophys. 16:423 (1995).

    Google Scholar 

  27. K. Lucas, C.I.T. 46:157 (1974).

    Google Scholar 

  28. R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977 and 1987).

    Google Scholar 

  29. C. Miqueu, D. Broseta, J. Satherley, B. Mendiboure, J. Lachaise, and A. Graciaa, Fluid Phase Equilib. 172:169 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Krzeminski, K. & Leipertz, A. Thermophysical Properties of 1,1,1,3,3-Pentafluorobutane (R365mfc). International Journal of Thermophysics 25, 987–1004 (2004). https://doi.org/10.1023/B:IJOT.0000038495.23799.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000038495.23799.42

Navigation