Skip to main content
Log in

A comparison of zooplankton communities in saline lakewater with variable anion composition

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although salinity and aquatic biodiversity are inversely related in lake water, the relationship between types of salts and zooplankton communities is poorly understood. In this study, zooplankton species were related to environmental variables from 12 lakes: three saline lakes with water where the dominant anions were SO4 and CO3, four saline lakes with Cl-dominated water, and five dilute, subsaline (0.5–3 gl−1 total dissolved solids) lakes of variable anion composition. Although this study comprised only 12 lakes, distinct differences in zooplankton communities were observed among the two groups of chemically defined saline lakes. Canonical correspondence analysis identified total alkalinity, sulphate, chloride, calcium, sodium, potassium, and total phosphorus as all contributing to the first two ordination axes (λ1 = 0.97 and λ2 = 0.62, P<0.05). The rotifer Brachionus plicatilis and the harpactacoid copepod Cletocamptus sp. prevailed lakes with Cl-dominated water. In contrast, the calanoid copepods Leptodiaptomus sicilis and Diaptomus nevadensis were dominant in the SO4/CO3-dominated lake water with elevated potassium (79–128 mg l−1) and total phosphorus concentrations (1322-2915 μg l−1). The contrasting zooplankton species distribution among these two saline lake types is likely explained by variable selective pressure on zooplankton and their predators from differing physiological tolerances to salt stress and specific ions. While inland saline lakes with Cl as the dominant anion are relatively rare in Canada and SO4/CO3 are the common features, our study provided an opportunity to compare zooplankton communities across the two groups of lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bergmann, M. & R. H. Peters, 1980. A simple reflectance method for the measurement of particulate pigment in lake water and its application to phosphorus-chlorophyll-seston relationships. Can. J. Fish. aquat. Sci. 37: 111–114.

    Google Scholar 

  • Bierhuizen, J. F. H. & E. E. Prepas, 1985. Relationship between nutrients, dominant ions, and phytoplankton standing crop in prairie saline lakes. Can. J. Fish. aquat. Sci. 42: 1588–1594.

    Google Scholar 

  • Blinn, D. W., 1993, Diatom community structure along physicochemical gradients in saline lakes. Ecology 74: 1246–1263.

    Google Scholar 

  • Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lakewater ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt Lake Res. 5: 1–15.

    Google Scholar 

  • Brandlova, J. Z. & C. H. Fernando, 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zool. 50: 1373–1403.

    Google Scholar 

  • Brooks, J. L., 1957. The Systematics of North American Daphnia. Memoirs of the Connecticut Academy of Arts and Sciences 13: 1–180.

    Google Scholar 

  • Campbell, C. E. & E. E. Prepas, 1986. Evaluation of factors related to the unusually low chlorophyll levels in prairie saline lakes. Can. J. Fish. aquat. Sci. 43: 846–854.

    Google Scholar 

  • Camsell, C., 1917. Salt and gypsum deposits in district between Peace and Slave rivers, northern Alberta. Geological survey of Canada summary report no. 1916: 134–145.

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Google Scholar 

  • Chengalath, R., C. H. Fernando & M. G. George, 1971. Planktonic Rotifera of Ontario. Dept. of Biology, University of Waterloo, Ont. Biology series. 40 pp.

  • Cuthbert, I. D. & P. del Giorgio, 1992. Toward a standard method of measuring color in freshwater. Limnol. Oceanogr. 37: 1319– 1326.

    Google Scholar 

  • Derry, A. M., P. D. N. Hebert & E. E. Prepas, 2003. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnol. Oceanogr. 48: 675–685.

    Google Scholar 

  • Devey, Jr. E. S. & G. B. Devey, 1971. The American species of Eubosmina seligo (Crustacea, Cladocera). Limnol. Oceanogr. 16: 201–218.

    Google Scholar 

  • Birge, E. A., 1959. The water fleas (Cladocera). In Edmondson, W. T. (ed.), Ward and Whipple's Freshwater Biology. John Wiley and Sons Inc. (NY): 677–740.

    Google Scholar 

  • Evans, J. C. & E. E. Prepas, 1996. Potential effects of climate change on ion chemistry and phytoplankton communities in prairie saline lakes. Limnol. Oceanogr. 41: 1063–1076.

    Google Scholar 

  • Evans, M. S., R. D. Robarts & M. T. Arts, 1995. Predicted versus actual determinations of algal production, algal biomass, and zooplankton biomass in a hypereutrophic, hyposaline prairie lake. Can. J. aquat. Sci. 52: 1037–1049.

    Google Scholar 

  • Forester, R. M., 1986. Determination of dissolved anion composition of ancient lakes from fossil ostracods. Geology 14: 796–798.

    Google Scholar 

  • Government & University of Alberta, 1969. Atlas of Alberta. University of Alberta Press in association with University of Toronto Press, Edmonton (AB): 7–8.

    Google Scholar 

  • Greenberg, A. E., L. S. Clesceri & A. D. Eaton, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, American WaterWorks Association and Water Environment Federation, Washington, D.C. 193 pp.

    Google Scholar 

  • Hammer, U. T., 1986. Saline Ecosystems of the World. Dr. W. Junk Publishers, Dordrecht. 616 pp.

    Google Scholar 

  • Hammer, U. T., 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int. J. Salt Lake Res. 2: 111–132.

    Google Scholar 

  • Herbst, D. B., 2001. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.

    Google Scholar 

  • Jellison, R., L. G. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnol. Oceanogr. 38: 1020–1039.

    Google Scholar 

  • Keller, W. & M. Conlin, 1994. Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Can. J. Fish. aquat. Sci. 51: 2424–2434.

    Google Scholar 

  • Koel, T. M. & J. J. Peterka, 1995. Survival to hatching of fishes in sulfate-saline waters, Devils Lake, North Dakota. Can. J. Fish. aquat. Sci. 52: 464–469.

    Google Scholar 

  • Last, W. M., 1992. Chemical composition of saline and subsaline lakes of the northern Great Plains, western Canada. Int. J. Salt Lake Res. 1: 47–76.

    Google Scholar 

  • Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.

    Google Scholar 

  • Meijer Drees, N.C., 1986. Evaporitic deposits of Western Canada. Geological survey of Canada. paper 85–20: 45, 51.

    Google Scholar 

  • Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Moser, K. A., J. P. Smol, D. R. S. Lean & G. M. MacDonald, 1998. Physical and chemical limnology of northern boreal lakes, Wood Buffalo National Park, northern Alberta, and the Northwest Territories, Canada. Hydrobiologia 377: 25–43.

    Google Scholar 

  • Nelson, J. S. & M. J. Paetz, 1992. The Fishes of Alberta. University of Alberta Press, Edmonton (AB). 437 pp.

    Google Scholar 

  • Pienitz, R., J. P. Smol & D. R. S. Lean, 1997. Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Can. J. Fish. aquat Sci. 54: 347–358.

    Google Scholar 

  • Prepas, E. E. & F. H. Rigler, 1982. Improvements in quantifying the phosphorus concentration in lake water. Can. J. Fish. aquat. Sci. 39: 822–829.

    Google Scholar 

  • Pfaff, J. D., 1993. Determination of inorganic anions by ion chromatography, revision 2.1, EPA method 300.0. United States Environmental Protection Agency Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati (OH) 45268.

    Google Scholar 

  • Rühland, K. & J. P. Smol, 1998. Limnological characteristics of 70 lakes spanning arctic treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. Int. Rev. Hydrobiol. 83: 183–203.

    Google Scholar 

  • Smith, K. & C. H. Fernando, 1978. A Guide to the Freshwater Calanoid and Cyclopoid Copepod Crustacea of Ontario. Dept. of Biology, University of Waterloo (ON), Biology series. 74 pp.

    Google Scholar 

  • Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater, 2nd ed. Fish. Environ. Can. Misc. Spec. Publ. 25: 180. Available on request from the Freshwater Institute, Winnipeg (MN).

    Google Scholar 

  • Stemberger, R. S., 1979. A Guide to Rotifers of the Laurentian Great Lakes. U.S. Environmental Protection Agency Rep. No. EPA-600-14-79-021. 185 pp.

  • ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO 4.0 Reference Manual and User's Guide to Canoco for Windows: software for canonical community ordination (version 4.0). Microcomputer Power, Ithaca (NY). 351 pp.

    Google Scholar 

  • Tones, P. I. & U. T. Hammer, 1975. Osmoregulation in Trichocorixa verticalis interiores Sailer (Hemiptera, Corixidae) – an inhabitant of Saskatchewan saline lakes, Canada. Can. J. Zool. 53: 1207–1212.

    Google Scholar 

  • Toth, J., 1999. Groundwater as a geologic event: an overview of the causes, processes, and manifestations. Hydrogeol. J. 7: 1–14.

    Google Scholar 

  • Waiser, M. J. & R. D. Robarts, 1995. Microbial nutrient limitation in prairie saline lakes with high sulfate concentration. Limnol. Oceanogr. 40: 566–574.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 3rd ed. Saunders College Publishing, Toronto (ON). 767 pp.

    Google Scholar 

  • Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.

    Google Scholar 

  • Winter, T. C., 1989. Distribution of the difference between precipitation and open-water evaporation in North America, Surface Water Hydrology. In U.S. Geological Survey (ed.), The Geology of North America V. 0-1. The Geological Society of America Inc., Boulder (CO), plate 2.

    Google Scholar 

  • Wurtsbaugh, W. A. & T. S. Berry, 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derry, A., Prepas, E. & Hebert, P. A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia 505, 199–215 (2003). https://doi.org/10.1023/B:HYDR.0000007414.12566.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000007414.12566.19

Navigation