Skip to main content
Log in

Tessellations of Homogeneous Spaces of Classical Groups of Real Rank Two

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let H be a closed, connected subgroup of a connected, simple Lie group G with finite center. The homogeneous space G/H has a tessellation if there is a discrete subgroup Γ of G, such that Γ acts properly discontinuously on G/H, and the double-coset space Γ\G/H is compact. Note that if either H or G/H is compact, then G/H has a tessellation; these are the obvious examples.

It is not difficult to see that if G has real rank one, then only the obvious homogeneous spaces have tessellations. Thus, the first interesting case is when G has real rank two. In particular, Kulkarni and Kobayashi constructed examples that are not obvious when G=SO(2, 2n)° or SU(2, 2n). Oh and Witte constructed additional examples in both of these cases, and obtained a complete classification when G=SO(2, 2n)°. We simplify the work of Oh-Witte, and extend it to obtain a complete classification when G=SU(2, 2n). This includes the construction of another family of examples.

The main results are obtained from methods of Benoist and Kobayashi: we fix a Cartan decomposition G=K A + K, and study the intersection (K H K)∩A +. Our exposition generally assumes only the standard theory of connected Lie groups, although basic properties of real algebraic groups are sometimes also employed; the specialized techniques that we use are developed from a fairly elementary level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata 87 (2001), 309–333.

    Google Scholar 

  2. Abels, H., Margulis, G. A., and Soifer, G. A.: Properly discontinuous groups of affine transformations with orthogonal linear part, CR Acad. Sci. Paris 324 I (1997), 253–258.

    Google Scholar 

  3. Benoist, Y.: Actions propres sur les espaces homogènes réductifs, Ann. Math. 144 (1996), 315–347.

    Google Scholar 

  4. Benoist, Y. and Labourie, F.: Sur les espaces homogènes modèles de variétés compactes, Publ. Math. IHES 76 (1992), 99–109.

    Google Scholar 

  5. Borel, A.: Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122.

    Google Scholar 

  6. Borel, A.: Linear Algebraic Groups, 2nd edn, Springer, New York, 1991.

    Google Scholar 

  7. Borel, A., Tits, J.: Groupes réductifs, Publ. Math. IHES 27 (1965), 55–150.

    Google Scholar 

  8. Charlap, L. S.: Bieberbach Groups and Flat Manifolds, Springer, New York, 1986.

    Google Scholar 

  9. Cohen, D. E.: Groups of Cohomological Dimension One, Lecture Notes in Math. 245, Springer, New York, 1972.

    Google Scholar 

  10. Cowling, M.: Sur les coefficients des représentations unitaires des groupes de Lie simple, In: P. Eymard, J. Faraut, G. Schiffmann, and R. Takahashi (eds), Analyse harmonique sur les groupes de Lie II (Séminaire Nancy-Strasbourg 1976-78), Lecture Notes in Math. 739, Springer, New York, 1979, pp. 132–178.

    Google Scholar 

  11. Dixmier, J.: L'application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France 85 (1957), 113–121.

    Google Scholar 

  12. Dold, A.: Lectures on Algebraic Topology, 2nd edn, Springer, New York, 1980.

    Google Scholar 

  13. Fried, D. and Goldman, W. M.: Three-dimensional affine crystallographic groups, Adv. Math. 47 (1983), 1–49.

    Google Scholar 

  14. Goldman, W.: Nonstandard Lorentz space forms, J. Differential Geom. 21 (1985), 301–308.

    Google Scholar 

  15. Goodman, R. and Wallach, N.: Representations and Invariants of the Classical Groups, Cambridge Univ. Press, Cambridge, 1998.

    Google Scholar 

  16. Goto, M. and Wang, H.-C.: Non-discrete uniform subgroups of semisimple Lie groups, Math. Ann. 198 (1972), 259–286.

    Google Scholar 

  17. Gromov, M.: Asymptotic invariants of infinite groups, In: G. A. Niblo and M. A. Roller (eds), Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Notes 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295.

    Google Scholar 

  18. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  19. Hochschild, G. P.: Basic Theory of Algebraic Groups and Lie Algebras, Springer, New York, 1981.

    Google Scholar 

  20. Hochschild, G. P.: The Structure of Lie Groups, Holden-Day, San Francisco, 1965.

    Google Scholar 

  21. Howe, R.: A notion of rank for unitary representations of the classical groups, In: A. Figà Talamanca, (ed.), Harmonic Analysis and Group Representations, (CIME 1980), Liguori, Naples, 1982, pp. 223–331.

    Google Scholar 

  22. Humphreys, J. E.: Linear Algebraic Groups, Springer, New York, 1975.

    Google Scholar 

  23. Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory, Springer, New York, 1980.

    Google Scholar 

  24. Husemoller, D.: Fibre Bundles, 2nd edn, Springer, New York, 1966.

    Google Scholar 

  25. Iozzi, A. and Witte, D.: Cartan decomposition subgroups of SU(2,n), J. Lie Theory 11 (2001), 505–543.

    Google Scholar 

  26. Iwasawa, K.: On some types of topological groups, Ann. Math. 50 (1949), 507–558.

    Google Scholar 

  27. Jacobson, N.: Lie Algebras, Dover, New York, 1979.

    Google Scholar 

  28. Katok, A. and Spatzier, R.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, IHES Publ. Math. 79 (1994), 131–156.

    Google Scholar 

  29. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, vol. 1, Interscience, New York, 1963.

    Google Scholar 

  30. Kobayashi, T.: Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989), 249–263.

    Google Scholar 

  31. Kobayashi, T.: Discontinuous groups acting on homogeneous spaces of reductive type, In: T. Kawazoe, T. Oshima and S. Sano (eds), Proceedings of ICM-90 Satellite Conference on Representation Theory of Lie Groups and Lie Algebras at Fuji-Kawaguchiko (31 August-3 September, 1990), World Scientific, Singapore, 1992, pp. 59–75.

    Google Scholar 

  32. Kobayashi, T.: A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type, Duke Math. J. 67 (1992), 653–664.

    Google Scholar 

  33. Kobayashi, T.: On discontinuous groups acting on homogeneous spaces with non-compact isotropy groups, J. Geom. Phys. 12 (1993), 133–144.

    Google Scholar 

  34. Kobayashi, T.: Criterion of proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996), 147–163.

    Google Scholar 

  35. Kobayashi, T.: Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds, In: B. Ørsted and H. Schlichtkrull, (eds), Algebraic and Analytic Methods in Representation Theory, Academic Press, New York, 1997, pp. 99–165.

    Google Scholar 

  36. Kobayashi, T.: Deformation of compact Clifford-Klein forms of indefinite Riemannian homogeneous manifolds, Math. Ann. 310 (1998), 395–409.

    Google Scholar 

  37. Kobayashi, T.: Discontinuous groups for non-Riemannian homogeneous spaces, In: B. Engquist and W. Schmidt (eds), Mathematics Unlimited-2001 and Beyond, Springer, New York, 2001, pp. 723–747.

    Google Scholar 

  38. Kobayashi, T. and Ono, K.: Note on Hirzebruch's proportionality principle, J. Fac. Sci. Univ. Tokyo, Math. 37 (1990), 71–87.

    Google Scholar 

  39. Kostant, B.: On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6 (1973), 413–455.

    Google Scholar 

  40. Kulkarni, R.: Proper actions and pseudo-Riemannian space forms, Adv. Math. 40 (1981), 10–51.

    Google Scholar 

  41. Labourie, F.: Quelques résultats récents sur les espaces localement homogènes compacts, In: P. de Bartolomeis, F. Tricerri and E. Vesentini (eds), Manifolds and Geometry, Sympos. Math. 36, Cambridge Univ. Press, 1996.

  42. Margulis, G. A.: Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 273 (1983), 937–940.

    Google Scholar 

  43. Margulis, G. A.: Existence of compact quotients of homogeneous spaces, measurably proper actions, and decay of matrix coefficients, Bull. Soc. Math. France 125 (1997), 447–456.

    Google Scholar 

  44. Milnor, J. W. and Stasheff, J. D.: Characteristic Classes, Princeton Univ. Press, Princeton, 1974.

    Google Scholar 

  45. Mostow, G. D.: Factor spaces of solvable groups, Ann. Math. 60 (1954), 1–27.

    Google Scholar 

  46. Oh, H.: Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France 126 (1998), 355–380.

    Google Scholar 

  47. Oh, H. and Witte, D.: Cartan-decomposition subgroups of SO(2,n), Trans. Amer. Math. Soc. (to appear).

  48. Oh, H. and Witte, D.: New examples of compact Clifford-Klein forms of homogeneous spaces of SO(2,n), Internat. Math. Res. Not. 2000 (8 March 2000), No. 5, 235–251.

    Google Scholar 

  49. Oh, H. and Witte, D.: Compact Clifford-Klein forms of homogeneous spaces of SO(2,n), Geom. Dedicata (to appear).

  50. Palais, R. S.: On the existence of slices for actions of non-compact Lie groups, Ann. Math. 73(2) (1961), 295–323.

    Google Scholar 

  51. Platonov, V. and Rapinchuk, A.: Algebraic Groups and Number Theory, Academic Press, Boston, 1994.

    Google Scholar 

  52. Raghunathan, M. S.: Discrete Subgroups of Lie Groups, Springer, New York, 1972.

    Google Scholar 

  53. Saito, M.: Sur certains groupes de Lie résolubles II, Sci. Papers Coll. Gen. Ed. Univ. Tokyo 7 (1957), 157–168.

    Google Scholar 

  54. Salein, F.: Variétés anti-deSitter de dimension 3 possédant un champ de Killing non trivial, CR Acad. Sci. Paris 324 I (1997), 525–530.

    Google Scholar 

  55. Tomanov, G.: The virtual solvability of the fundamental group of a generalized Lorentz space form, J. Differential Geom. 32 (1990), 539–47.

    Google Scholar 

  56. Varadarajan, V. S.: Lie Groups, Lie Algebras, and their Representations, Springer, New York, 1984.

    Google Scholar 

  57. Whitehead, G. W.: Elements of Homotopy Theory, Springer, New York, 1978.

    Google Scholar 

  58. Witte, D.: Tessellations of solvmanifolds, Trans. Amer. Math. Soc. 350(9) (1998), 3767–3796.

    Google Scholar 

  59. Zariski, O. and Samuel, P.: Commutative Algebra, vol. 1, Springer, New York, 1958.

    Google Scholar 

  60. Zeghib, A.: On closed anti-deSitter spacetimes, Math. Ann. 310(4) (1998), 695–716.

    Google Scholar 

  61. Zimmer, R. J.: Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Ann. Math. 106 (1977), 573–588.

    Google Scholar 

  62. Zimmer, R. J.: Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iozzi, A., Witte Morris, D. Tessellations of Homogeneous Spaces of Classical Groups of Real Rank Two. Geometriae Dedicata 103, 115–191 (2004). https://doi.org/10.1023/B:GEOM.0000013840.18788.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GEOM.0000013840.18788.81

Navigation