Skip to main content
Log in

Transposable Element Distribution in the Yeast Genome Reflects A Role in Repeated Genomic Rearrangement Events on an Evolutionary Time Scale

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Statistical analysis of the distribution of transposable elements (TEs) and tRNA genes in the genome of yeast Saccharomyces cerevisiae indicated that, although tRNA genes and other genes transcribed by RNA polymerase III are targets for TE insertion, the distribution of TEs was significantly more clumped than that of tRNAs. Genomic blocks putatively duplicated as the result of an ancient polyploidization event contained fewer TEs than expected by their length, and nearly two thirds of duplicated blocks lacked TEs altogether. In addition, the edges of duplicated blocks tended to be located in TE-poor genomic regions. These results can be explained by the hypotheses: (1) that transposition events have occurred well after block duplication; (2) that TEs have frequently played a role in genomic rearrangement events in yeast. According to this model, duplicated blocks identifiable as such in the present-day yeast genome are found largely in regions with low TE density because in such regions the duplicated structure has not been obscured by TE-mediated rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen, J.L., 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    PubMed  Google Scholar 

  • Blanc, G., K. Hokamp & K.H. Wolfe, 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13: 137–144.

    Article  PubMed  Google Scholar 

  • Daboussi, M.J., 1997. Fungal transposable elements and genome evolution. Genetica 100: 253–260.

    PubMed  Google Scholar 

  • Devine, S.E. & J.D. Boeke, 1996. Regionally specific, targeted integration of the yeast retrotransposon Ty1 upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.

    PubMed  Google Scholar 

  • Federoff, N. 2000. Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. USA 97: 7002–7009.

    PubMed  Google Scholar 

  • Friedman, R. & A.L. Hughes, 2001. Gene duplication and the structure of eukaryotic genomes. Genome Res. 11: 373–381.

    PubMed  Google Scholar 

  • Hughes, A.L. & R. Friedman, 2003. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res. 13: 794–799.

    PubMed  Google Scholar 

  • Hughes, A.L., R. Friedman, V. Ekollu & J.R. Rose, 2003. Non-random associations of transposable elements with duplicated genomic blocks in Arabidopsis thaliana. Mol. Phyl. Evol. 29: 410–416.

    Google Scholar 

  • Kidwell, M.G. & D.R. Lisch, 2001. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55: 1–24.

    PubMed  Google Scholar 

  • Kim, J.M., S. Vanguri, J.D. Boeke, A. Gabriel & D.F. Voytas, 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464–478.

    PubMed  Google Scholar 

  • McDonald, J.F. 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Dev. 3: 855–864.

    PubMed  Google Scholar 

  • Pinsker, W., E. Haring, S. Hagemann & W.J. Miller, 2001. The evolutionary history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110: 148–158.

    PubMed  Google Scholar 

  • Promislow, D.E.L., I.K. Jordan & J.F. McDonald, 1999. Genomic demography: a life-history analysis of transposable element evolution. Proc. R. Soc. Lond. B 266: 1555–1560.

    PubMed  Google Scholar 

  • Rothnie, H.M., K.J. McCurrach, L.A. Glover & N. Hardman, 1991. Retroposon-like nature of Tp1 elements: implications for the organization of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum. Nucleic Acids Res. 19: 279–286.

    PubMed  Google Scholar 

  • San Miguel, P., A. Tikhonov, Y.K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotrans-posons in the intergenic regions of the maize genome. Science 274: 765–768.

    Google Scholar 

  • Seoighe, C. & K.H. Wolfe, 1999. Updated map of duplicated regions in the yeast genome. Gene 238: 253–261.

    PubMed  Google Scholar 

  • Wilke, C.M., E. Maimer & J. Adams, 1992. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 86: 155–173.

    PubMed  Google Scholar 

  • Wolfe, K.H. & D.C. Shields, 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L., Friedman, R. Transposable Element Distribution in the Yeast Genome Reflects A Role in Repeated Genomic Rearrangement Events on an Evolutionary Time Scale. Genetica 121, 181–185 (2004). https://doi.org/10.1023/B:GENE.0000040383.51611.e3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000040383.51611.e3

Navigation