Skip to main content
Log in

Gene Expression Profiling in Ecotoxicology

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Gene expression profiling is a powerful new end point for ecotoxicology and a means for bringing the genomics revolution to this field. We review the usefulness of gene expression profiling as an end point in ecotoxicology and describe methods for applying this approach to non-model organisms. Since genomes contain thousands of genes representing hundreds of pathways, it is possible to identify toxicant-specific responses from this wide array of possibilities. Stressor-specific signatures in gene expression profiles can be used to diagnose which stressors are impacting populations in the field. Screening for stress-induced genes requires special techniques in organisms without sequenced genomes. These techniques include differential display polymerase chain reaction (DD PCR), suppressive subtractive hybridization PCR (SSH PCR), and representational difference analysis. Gene expression profiling in model organisms like yeast has identified hundreds of genes that are up-regulated in response to various stressors, including several that are well characterized (e.g., hsp78, metallothionein, superoxide dismutase). Using consensus PCR primers from several animal sequences, it is possible to amplify some of these well characterized stress-induced genes from organisms of interest in ecotoxicology. We describe how several stress-induced genes can be grouped into cDNA arrays for rapidly screening samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, A., Mutch, D.M., German, J.B. and Roberts, M.A. (2002). Unraveling lipid metabolism with microarrays: effects of archidonate and docosahexaenoate acid on murine hepatic and hippocampal gene expression. Genome Biology 3: preprint 0004.1–0004.53.

    Google Scholar 

  • Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S. and Young, R.A., (2001). Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12, 323-37.

    Google Scholar 

  • Daibo, S., Kimura, M.T. and Goto, S.G. (2001). Up-regulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria. Gene 278, 177-84.

    Google Scholar 

  • Denslow, N.D., Bowman, C.J., Robinson, G., Lee, H.S., Ferguson, R.J., Hemmer, M.J. and Folmer, L.C. (1999). Biomarkers of endocrine disruption at the mRNA level. In D.S. Henshel, M.C. Black and M.C. Harrass (eds) Environmental Toxicology and Risk Assessment: Standardization of Biomarkers of Endocrine Disruption and Environmental Assessment, Vol. 8, pp. 24-35. West Conshohocken, PA, USA: American Society for Testing and Materials.

    Google Scholar 

  • Denslow, N.D., Bowman, C.J., Ferguson, R.J., Lee, H.S., Hemmer, M.J. and Folmar, L.C. (2001a). Induction of gene expression in sheepshead minnows (Cyprinodon variegatus) treated with 17B-estradiol, diethylstilbestrol, or ethinylestradiol: the use of mRNA fingerprints as an indicator of gene regulation. Gen. Comp. Endocrinol. 121, 250-260.

    Google Scholar 

  • Denslow, N.D., Lee, H.S., Bowman, C.J., Hemmer, M.J. and Folmar, L.C. (2001b). Multiple responses in gene expression in fish treated with estrogen. Comp. Biochem. Physiol. B 129, 277-282.

    Google Scholar 

  • Diatchenko, L., Lau, Y., Campbell, F.C., Chenchil, A.P., Moqadam, A., Huang, F., Lukyanov, B., Lukyanov, S., Gurskaya, K., Sverdlov, N. and Siebert, E.D. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025-30.

    Google Scholar 

  • Edman, C.F., Prigent, S.A., Schipper, A. and Feramisco, J.R. (1997). Identification or ErbB3-stimulated genes using modified representational difference analysis. Biochem. J. 323, 113-18.

    Google Scholar 

  • Gasch, A.P., Kao, C.M., Huang, M., Carmel-Harel, O., Storz, G., Elledge, S.J., Botstein, D. and Brown, P.O. (2000). A common genomic expression program in the response of S. cerevisiae to diverse environmental stresses. Mol. Biol. Cell. 11, 4241-42.

    Google Scholar 

  • Gibson, G. (2002). Microarrays in ecology and evolution: a preview. Mol. Ecol. 11, 17-24.

    Google Scholar 

  • Gurskaya, N.G., Diatchenko, L., Chenchik, L., Siebert, P.D., Khaspekov, G.L., Lukyanov, G.L., Vagner, K.A., Ermolaeva, L.L., Lukyanov, O.D. and Sverdlov, E.D. (1996). Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal. Biochem. 240, 90-97.

    Google Scholar 

  • Heidenreich, B., Mayer, K., Sandermann, H. Jr and Ernst, D. (2001). Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant, Cell Environ. 24, 1227-34.

    Google Scholar 

  • Hoffmann, A.A. and Parsons, P.A. (1991). Evolutionary Genetics and Environmental Stress, 284 p. New York: Oxford University Press.

    Google Scholar 

  • Holter, N., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. and Federoff, N. (2000). Fundamental patterns underlying gene expression profiles: simplicity from complexity. PNAS USA 97, 8409-14.

    Google Scholar 

  • Hubank, M. and Schatz, D.G. (1999). cDNA representational difference analysis: a sensitive and flexible method for identification of differentially expressed genes. Meth. Enzymol. 303, 325-49.

    Google Scholar 

  • Kerr, M.K. and Churchill, G. (2001). Statistical design and the analysis of gene expression microarray data. Genetical Res. 77, 123-28.

    Google Scholar 

  • Larkin, P., Folmar, L.C., Hemmer, M.J., Poston, A.J., Lee, H.S. and Denslow, N.D. (2002). Array technology as a tool to monitor exposure of fish to xenoestrogens. Mar. Environ. Res. 54, 395-9.

    Google Scholar 

  • Liang, P. and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-71.

    Google Scholar 

  • Liang, P., Zhu, W., Zhang, X., Guo, Z., O'Connell, R.P., Averboukh, L., Wang, F. and Pardee, A.B. (1994). Differential display using one-base anchored oligo-dT primers. Nuc. Acids Res. 22, 5763-64.

    Google Scholar 

  • Lisitsyn, N. and Wigler, M. (1993). Cloning the differences between two complex genomes. Science 259, 946-51.

    Google Scholar 

  • Mak, C.H., Sun, K.W. and Ko, R.C. (2001). Identification of some heat-induced genes of Trichinella spiralis. Parisitology 123, 293-300.

    Google Scholar 

  • Momose, Y. and Iwahashi, H. (2001). Bioassay of cadmium using DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ. Toxicol. Chem. 20, 2353-60.

    Google Scholar 

  • Morgan, M., Vogelien, D.L. and Snell, T.W. (2001). Assessing coral stress responses using molecular biomarkers of gene transcription. Environ. Toxicol. Chem. 20, 537-43.

    Google Scholar 

  • Morgan, M.B. and Snell, T.W. (2002). Characterizing stress gene expression in reef-building corals exposed to the mosquitoside dibrom.. Mar Pollut. Bull. 44, 1206-18.

    Google Scholar 

  • Pastorian, K., Hawel, L. and Byus, C.V. (2000). Optimization of cDNA representational difference analysis for the identification of differentially expressed mRNAs. Anal. Biochem. 283, 89-98.

    Google Scholar 

  • Pearson, G., Serrao, E.A. and Cancela, M.L. (2001). Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae. Europ. J. Phycol. 36, 359-66.

    Google Scholar 

  • Ramdas, L., Coombes, K.R., Baggerly, K., Abruzzo, L., Highsmith, W.E., Krogmann, T., Hamilton, S.R. and Zhang, W. (2001). Sources of nonlinearity in cDNA microarray expression measurements. Genome Biol. 2(11), 1-7.

    Google Scholar 

  • Rhodes, L.E. and Van Beneden, R.J. (1996). Gene expression analysis in aquatic animals using differential display polymerase chain reaction. In G.K. Ostrander (ed.) Techniques in Aquatic Toxicology, pp. 161-83. Boca Raton, FL: CRC Lewis Publishers.

    Google Scholar 

  • Sanders, B.M. (1993). Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23, 49-75.

    Google Scholar 

  • Schena, M., Salon, D., Davis, R.W. and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a cDNA microarray. Science 270, 467-70.

    Google Scholar 

  • Sultan, A., Abelson, A., Bresler, V., Fishelson, L. and Mokady, O. (2000). Biomonitoring marine environmental quality at the level of gene expression—testing the feasibility of a new approach. Water Sci. Tech. 42, 269-74.

    Google Scholar 

  • Tohyama, H., Tomoyasu, T., Inoue, M., Joho, M. and Murayama, T. (1992). The gene for cadmium metallothionein from cadmium-resistant yeast appears to be identical to CUP1 in copper-resistant strain. Curr. Gen. 21, 275-80.

    Google Scholar 

  • Travers, K.J., Patil, C.K., Wodicka, L., Lockhart, D.J., Weissman, J.S. and Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-58.

    Google Scholar 

  • US EPA. (2000). Stressor Identification Guidance Document, Washington, DC: Office fo Water. EPA-B-025.

    Google Scholar 

  • Wodicka, L., Dong, H., Mittmann, M., Ho, M. and Lockhart, D.J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotech. 15, 1359-67.

    Google Scholar 

  • Zoldos, V., Siljak-Yakovlev, S., Papes, D., Sarr, A. and Panaud, O. (2001). Representational difference analysis reveals genomic differences between Quercus robur and Q. suber: implications for the study of genome evolution in the genus Quercus. Mol. Gen. Genomics 265, 234-41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry W. Snell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snell, T.W., Brogdon, S.E. & Morgan, M.B. Gene Expression Profiling in Ecotoxicology. Ecotoxicology 12, 475–483 (2003). https://doi.org/10.1023/B:ECTX.0000003033.09923.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000003033.09923.a8

Navigation