Skip to main content
Log in

Computing Equilibria in General Equilibrium Models via Interior-point Methods

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper we study new computational methods to find equilibria in generalequilibrium models. We first survey the algorithms to compute equilibria thatcan be found in the literature on computational economics and we indicate howthese algorithms can be improved from the computational point of view. We alsoprovide alternative algorithms that are able to compute the equilibria in anefficient manner even for large-scale models, based on interior-point methods.We illustrate the proposed methods with some examples taken from theliterature on general equilibrium models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelman, I. and Robinson, S. (1978). Income Distribution Policy in Developing Countries: A Case Study of Korea. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Arrow, K.J. and Debreu, G. (1954). Existence of equilibrium for a competitive economy. Econometrica, 22, 265–290.

    Google Scholar 

  • Arrow, K.J. and Hahn, F.H. (1971, 1983). General Competitive Analysis. Advanced Textbooks in Economics, Vol. 12. North Holland, New York.

    Google Scholar 

  • Brouwer, L.E. (1912). Ñber Abbildung von Manningfaltigkeiten. Math. Ann., 71, 97–115.

    Google Scholar 

  • Byrd, R.H., Hribar,M.E. and Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4), 877–900.

    Google Scholar 

  • Cottle, R.W. (1966). Nonlinear programs with positively bounded jacobians. SIAM Journal on Applied Mathematics, 14, 147–158.

    Google Scholar 

  • Debreu, G. (1959, 1987). Theory of Value. In 1959, John Wiley and Sons, New York. Second edition in 1987, Cowless Foundation Monographs, 17, Yale University Press, New Haven.

    Google Scholar 

  • Dennis, J.E. Jr. and Schnabel, R.B. (1996). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia.

    Google Scholar 

  • Diewert, W.E. (1970). On a theorem of Negishi. Metroeconomica, XXV, 119–135.

    Google Scholar 

  • Dirkse, S.P. and Ferris, M.C. (1995). The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software, 5, 123–156.

    Google Scholar 

  • Dirkse, S.P. and Ferris, M.C. (1997). Crash techniques for large-scale complementarity problems. In M.C. Ferris and J.S. Pang (eds.), Complementarity and Variational Problems: State of the Art. SIAM Publications, Philadelphia, Pennsylvania.

    Google Scholar 

  • Eaves, B.C. (1972). Homotopies for the computation of fixed points. Mathematical Pogramming, 3, 225–237.

    Google Scholar 

  • Eaves, B.C. and Schmedders, K. (1999). General equilibrium models and homotopy methods. Journal of Economic Dynamics and Control, 23, 1249–1279.

    Google Scholar 

  • Esteban-Bravo, M. (2000). Existence and computation of equilibria in general equilibrium. Ph.D. thesis, Universidad Carlos III de Madrid, Spain, December.

    Google Scholar 

  • Ferris, M.C., Kanzow, C. and Munson, T. (1999). Feasible descent algorithms for mixed complementarity problems. Mathematical Programming, 86, 475–497.

    Google Scholar 

  • Fiacco, A.V. and McCormick, G.P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley and Sons, New York.

    Google Scholar 

  • Fletcher, R. (1987). Practical Methods of Optimization, 2nd edn. Wiley, Chichester.

    Google Scholar 

  • Gale, D. (1955). The law of supply and demand. Mathematica Scandinavia, 3, 155–169.

    Google Scholar 

  • Garcia, C.B. and Zangwill,W.I. (1981). Pathways to Solutions, Fixed Points, and Equilibria. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gill, P.E., Murray, W., Sauders, M.A., Tomlin, J.A. and Wright, M.H. (1986). On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method. Mathematical Programming, 36, 183–209.

    Google Scholar 

  • Ginsburgh, V. and Keyzer, M. (1997). The Structure of Applied General Equilibrium Models. The MIT Press, Cambridge.

    Google Scholar 

  • Ginsburgh, V. and Waelbroeck, J.L. (1981). Activity Analysis and General Equilibrium Modelling. North-Holland, Amsterdam.

    Google Scholar 

  • Golub, G.H. and Van Loan, C.F. (1996). Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Hansen, T. (1968). On the approximation of a competitive equilibrium. Ph.D. thesis, Yale University.

  • Harker, P.T. and Pang, J.S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Mathematical Programming, 48, 161–220.

    Google Scholar 

  • Hirsch, M.W. (1963). A proof of the nonretractability of a cell into its boundary. Proceedings of the American Mathematical Society, 14, 364–365.

    Google Scholar 

  • Judd, K.L. (1998). Numerical Methods in Economics. The MIT Press, Cambridge.

    Google Scholar 

  • Kehoe, T.J. (1991). Computation and multiplicity of equilibria. In W. Hildenbrand and H. Sonnenschein (eds.), Handbook of Mathematical Economics, Vol. IV, Ch. 38, 2049–2144. Elsevier Science Publishers B.V.

  • Kellog, R.B., Li, T.Y. and Yorke, J. (1976). A constructive proof of the Brouwer fixed-point theorem and computational results. SIAM Journal of Numerical Analysis, 13, 478–483.

    Google Scholar 

  • Kuhn, H.W. (1968). Simplicial approximation of fixed points. Proc. Nat. Acad. Sci., 61, 1238–1242.

    Google Scholar 

  • Kuhn, H.W. (1969). Approximate search for fixed points. In Computing Methods in Optimization Problems-2. Academic Press, New York.

    Google Scholar 

  • Lemke, C.E. (1965). Bi-matrix equilibrium points and mathematical programing. Management Science, 11, 681–689.

    Google Scholar 

  • Lemke, C.E. and Howson, J.T. (1964). Equilibrium points of bi-matrix games. SIAM Journal of Applied Mathematics, 12, 412–423.

    Google Scholar 

  • Luenberger, D.G. (1979). Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley, New York.

    Google Scholar 

  • Mantel, R.R. (1971). The welfare adjustment process: its stability properties. International Economic Review, 12, 415–430.

    Google Scholar 

  • Mathiesen, L. (1985). Computational experience in solving equilibrium models by a sequence of linear complementarity problems. Operations Research, 33(6), 1225–1250.

    Google Scholar 

  • Merril, O.H. (1972). Applications and extension of an algorithm that computes fixed points of certain upper semi-continuous point to set mappings. Ph.D. thesis, Department of Industrial Engineering, University of Michigan.

  • McKenzie, L. (1959). On the existence of general equilibrium for a competitive market. Econometrica, 27, 54–71.

    Google Scholar 

  • Morales, J.L., Waltz, R., Liu, G., Goux, J.P. and Nocedal, J. (2001). Assessing the potential of interior methods for nonlinear optimization. Proceedings of the first Sandia workshop on large-scale PDE-constrained optimization. In O. Ghattas (ed.), Springer's Lecture Notes in Computational Science and Engineering. Santa Fe, New Mexico, U.S.A.

  • Nagurney, A. (1993). Network Economies-A Variational Inequality Approach. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Negishi, T. (1960). Welfare economics and the existence of an equilibrium for a competitive economy. Metroeconomica, XII, 92–97.

    Google Scholar 

  • Nikaido, H. (1956). On the classical multilateral exchange problem. Metroeconomica, VIII, 135–145.

    Google Scholar 

  • Nesterov, Y. and Nemirovskii, A. (1994). Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia.

    Google Scholar 

  • Nocedal, J. and Wright, S.J. (1999). Numerical Optimization. Springer Series in Operations Research. Springer-Verlag, New York.

    Google Scholar 

  • Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, San Diego.

    Google Scholar 

  • Robinson, S.M. (1994). Newton's method for a class of nonsmooth functions. Set-Valued Analysis, 2, 291–305.

    Google Scholar 

  • Samuelson, P.A. (1941). The stability of equilibrium: comparative statics and dynamics. Econometrica, 9, 97–120.

    Google Scholar 

  • Samuelson, P.A. (1942). The stability of equilibrium: linear and nonlinear systems. Econometrica, 10, 1–25.

    Google Scholar 

  • Samuelson, P.A. (1947). Foundations of Economic Analysis. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Scarf, H.E. (1967). The approximation of fixed points of a continuous mapping. Journal of Applied Mathematics, 15, 1328–1343.

    Google Scholar 

  • Scarf, H.E. (1982). The computation of equilibrium prices: an exposition. In W. Hildenbrand and H. Sonnenschein (eds.), Handbook of Mathematical Economics, Vol. II, Ch. 21, 1007–1061. Elsevier Science Publishers B.V.

  • Scarf, H.E. (1998). The computation of equilibrium prices. In A. Kirman (ed.), Elements of General Equilibrium Analysis, Ch. 4, 88–138. Blackwell Publishers Ltd.

  • Scarf, H.E. and Hansen, T. (1973). The Computation of Economic Equilibria. Yale University Press, New Haven.

    Google Scholar 

  • Smale, S. (1974-76). Global analysis and economics, IIA-VI. Journal of Mathematical Economics, 1, 1–14, 107-117, 119-127, 213-221.

    Google Scholar 

  • Smale, S. (1976). A convergent process of price adjustment and global Newton methods. Journal of Mathematical Economics, 3, 1–14.

    Google Scholar 

  • Smale, S. (1982). Global analysis and economics. In W. Hildenbrand and H. Sonnenschein (eds.), Handbook of Mathematical Economics, Vol. I, Ch. 8, 331–370. Elsevier Science Publishers B.V.

  • Sperner, E. (1928). Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. a.d. Math. Sem. d. Univ. Hamburg, 6, 265–272.

    Google Scholar 

  • Takayama, A. and El Hodiri, M. (1968). Programming, Pareto optimum and the existence of competitive equilibria. Metroeconomica, XX, 1–10.

    Google Scholar 

  • Van der Laan, G. and Talman, A.J.J. (1979). A restart algorithm for computing fixed points without an extra dimension. Mathematical Programming, 17, 74–84.

    Google Scholar 

  • Walras, L. (1874, 1954). Eléments d'économie politique pure. In 1874, L. Corbaz, Lausanne. English translation of William Jaffé in 1954: Elements of Pure Economics. Allen and Unwin, London.

    Google Scholar 

  • Whalley, J. (1973). A numerical assessment of the 1973 United Kingdom. Ph.D. thesis, Yale University.

  • Wright, M.H. (1991). Interior methods for constrained optimization. Acta Numerica, 341–407.

  • Wright, S. (1997). Primal-Dual Interior-Point Methods. SIAM Philadelphia, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban-Bravo, M. Computing Equilibria in General Equilibrium Models via Interior-point Methods. Computational Economics 23, 147–171 (2004). https://doi.org/10.1023/B:CSEM.0000021673.38534.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CSEM.0000021673.38534.ef

Navigation