Skip to main content
Log in

Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper we present a new technique to simulate polymer blends that overcomes the shortcomings in polymer system modeling. This method has an inherent advantage in that the vast existing information on polymer systems forms a critical part in the design process. The stages in the design begin with selecting potential candidates for blending using Neural Networks. Generally the parent polymers of the blend need to have certain properties and if the blend is miscible then it will reflect the properties of the parents. Once this step is finished the entire problem is encoded into a genetic algorithm using various models as fitness functions. We select the lattice fluid model of Sanchez and Lacombe (J. Polym. Sci. Polym. Lett. Ed., vol. 15, p. 71, 1977), which allows for a compressible lattice. After reaching a steady-state with the genetic algorithm we transform the now stochastic problem that satisfies detailed balance and the condition of ergodicity to a Markov Chain of states. This is done by first creating a transition matrix, and then using it on the incidence vector obtained from the final populations of the genetic algorithm. The resulting vector is converted back into a population of individuals that can be searched to find the individuals with the best fitness values. A high degree of convergence not seen using the genetic algorithm alone is obtained. We check this method with known systems that are miscible and then use it to predict miscibility on several unknown systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.C. Sanchez and R.H. Lacombe, “Elementary equation of state for polymer liquids,” J. Polym. Sci. Polym. Lett. Ed., vol. 15, p. 71, 1977.

    Google Scholar 

  2. B.G. Sumpter, C. Getino and D.W. Noid, “Theory and applications of neural computing in chemical science,” Annu. Rev. Phys. Chem., vol. 45, pp. 439-481, 1994.

    Google Scholar 

  3. R.L. Jalbert and J.P. Smejkal, Modern Plastics Encyclopedia 1976-1977, McGraw-Hill: New York, 1976.

    Google Scholar 

  4. D.R. Paul and S. Newman (Eds.), Polymer Blends, Academic Press: New York, 1978.

    Google Scholar 

  5. H.V. Boenig, Structure and Properties of Polymers, John Wiley & Sons: New York, 1998.

    Google Scholar 

  6. J. Bicerano, Prediction of Polymer Properties, Marcel Dekker: New York, 1998.

    Google Scholar 

  7. J. Bicerano (Eds.), Computational Modeling of Polymers, Marcel Dekker: New York, 1998.

    Google Scholar 

  8. J. Reed, R. Toombs and N.A. Barricelli, “Simulation of biological evolution and machine learning. 1. Selection of selfreproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing,” Journal of Theoretical Biology, vol. 17, pp. 319-342, 1967.

    Google Scholar 

  9. C. Hansen and A. Beerbower, “Solubility parameters,” Kirk-Othmer Encycl. Chem. Technol., 2nd edition, (Suppl.) 1971, p. 889.

  10. B.E. Eichinger and P.J. Flory, “Thermodynamics of polymer solutions. 1. Natural rubber and benzene,” Trans. Faraday Soc., vol. 64, pp. 2035, 1968.

    Google Scholar 

  11. I.C. Sanchez and R.H. Lacombe, “Elementary molecular theory of classical fluids-Pure fluids,” J. Phys. Chem., vol. 80, pp. 2352, 1976.

    Google Scholar 

  12. I.M. Ward, Mechanical Properties of Solid Polymers, Wiley-Interscience: New York, 1989.

    Google Scholar 

  13. I.E. Nielsen, Mechanical Properties of Polymers, Reinhold: New York, 1991.

    Google Scholar 

  14. T. Murayam, Dynamic Mechanical Analysis of Polymeric Materials, Elsevier, 1978.

  15. 15. J. Brandrup and E.H. Immergut (Eds.), Polymer Handbook, John Wiley & Sons, 1989.

  16. R. Juran (Eds.), Modern Plastics Encyclopedia, McGraw Hill: New York, 1989.

    Google Scholar 

  17. Z.G. Gardlung, “Polymer blends and composites in multiphase systems,” Advances in Chemistry Series, C.D. Han (Eds.), ACS, Washington, D.C., 1984, p. 206.

    Google Scholar 

  18. Z.G. Gardlung, “Thermal and dynamic mechanical analysis of polycarbonate/poly(methyl methacrylate) blends,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., vol. 23, p. 258, 1982.

    Google Scholar 

  19. R.H. Boundy and R.F. Bayer (Eds.), Styrene, Its Polymer, Copolymer and Derivatives, Reinhold, New York, 1972.

    Google Scholar 

  20. E.P. Cizek, U.S. Patent No. 3,383,435, May 14, 1968, assigned to General Electric Co.

  21. J. Dayhoff, Neural Network Architechtures, Van Nostrand Reinhold: New York, 1990.

    Google Scholar 

  22. R. Hecht-Nielsen, Neurocomputing, Addison-Wesley: Reading, MA, 1990.

    Google Scholar 

  23. T. Khanna, Foundations of Neural Networks, Addison-Wesley: Reading, MA, 1990.

    Google Scholar 

  24. T. Kohonen, Self Organization and Associative Memory, Springer-Verlag: Berlin, 1988.

    Google Scholar 

  25. D. Specht and P. Shapiro, “Generalization accuracy of probabilistic neural networks compared with backpropagation networks,” in Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 887-892, July 8-12, 1991.

    Google Scholar 

  26. D. Specht, “A general regression neural network,” IEEE Trans. on Neural Networks, vol. 2, no. 6, pp. 568-576, 1991.

    Google Scholar 

  27. S. Haykin, Neural Networks-A Comprehensive Foundation, Macmillan College Publishing Company: New York, 1994.

    Google Scholar 

  28. N. Trinajstic, Chemical Graph Theory, CRC Press: London, 1992.

    Google Scholar 

  29. J.H. Holland, “Genetic algorithms and classifier systems: Foundations and future directions,” in Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 82-89.

  30. H.J. Antonisse and K.S.Keller, “Genetic operators for high-level knowledge representations,” in Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 69-76.

  31. L. Davis and M. Steenstrup, “Genetic algorithms and simulated annealing: An overview,” in Genetic Algorithms and Simulated Annealing, L. Davis, (Eds.), London Pitmann, 1987, pp. 1-11.

  32. P. Hamada, T. Shiomi, K. Fujisawa, and A. Nakajima, “Statistical thermodynamics of polymer solutions based on free volume theory,” Macromolecules, vol. 13, p. 729, 1980.

    Google Scholar 

  33. I.C. Sanchez and R.H. Lacombe, “Statistical thermodynamics of polymer solutions,” Macromolecules, vol. 11, p. 1145, 1978.

    Google Scholar 

  34. I.C. Sanchez, “Statistical thermodynamics of bulk and surface-Properties of polymer mixtures,” J. Macromol. Sci. Phys., vol. B17, p. 565, 1980.

    Google Scholar 

  35. I.C. Sanchez, “Polymer compatibility and incompatibility, principles and practice,” in MMI Symp. Ser., Jolck (Ed.), Copper Station: N.V., Harwood, 1982, vol. 3, pp. 59-76.

    Google Scholar 

  36. P.J. Flory, “Thermodynamics of polymer solutions,” Discuss. Faraday. Soc., vol. 49, p. 7, 1970.

    Google Scholar 

  37. T. Clark, A Handbook of Computational Chemistry: Practical Guide to Chemical Structure and Energy Calculations, Wiley: New York, 1996.

    Google Scholar 

  38. P.J. Flory, Statistical Mechanics of Chain Molecules, Wiley-Interscience: New York, 1979.

    Google Scholar 

  39. S.I. Sandler, Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker: New York, 1993.

    Google Scholar 

  40. M.A. Johnson and G.M. Maggiora, Concepts and Applications of Molecular Similarity, John Wiley & Sons: New York, 1992.

    Google Scholar 

  41. A. Fredenslund, J. Gmehling, and P. Rasmussen, Vapour-Liquid Equilibria Using UNIFAC, Elsevier: Amsterdam, 1977.

    Google Scholar 

  42. G.R. Strobl, The Physics of Polymers, Springer-Verlag: Berlin, 1996.

    Google Scholar 

  43. O. Olabisi and R. Simha, “Pressure-volume-temperature studies of amorphous and crystallizable polymers. I. Experimental,” Macromolecules, vol. 8, p. 206, 1975.

    Google Scholar 

  44. H. Hocker, G.J. Blake, and P.J. Flory, “Equation-of-state parameters for polystyrene,” Trans. Faraday Soc., vol. 67, p. 2251, 1971.

    Google Scholar 

  45. R.H. Lacombe and I.C. Sanchez, “Statistical thermodynamics of fluid mixtures,” J. Phys. Chem., vol. 80, p. 2568, 1976.

    Google Scholar 

  46. D.E. Goldberg, “Genetic algorithms and simulated annealing: An overview,” in “Genetic Algorithms and Simulated Annealing,” L. Davis (Ed.), pp. 74-88, London Pitmann, 1987.

    Google Scholar 

  47. M.D. Vose and G.E. Liepins, “Punctuated equilibria in genetic search,” Complex Systems, vol. 5, pp. 31-44, 1991.

    Google Scholar 

  48. J.H. Holland, “Genetic algorithms and adaptation,” in Proceedings of the NATO Advanced Research Institute on Adaptive Control of Ill-Defined Systems, O.G. Selfridge, E.L. Rissland, and M.A. Arib (Eds.), Plenum Press: New York, 1984, pp. 317-333.

    Google Scholar 

  49. A. Nix and M.D. Vose, “Modeling genetic algorithms with Markov Chains,” Annals of Mathematics and Artificial Intelligence, vol. 5, pp. 79-88, 1992.

    Google Scholar 

  50. M.D. Vose, “Modeling simple genetic algorithms,” in Foundations of Genetic Algorithms, L. Darrell Whitley (Ed.), Aug. 1992, vol. 2, pp. 63-73.

  51. G. Rudolf, “Convergence analysis of canonical genetic algorithms,” IEEE Trans. Neural Networks, Special Issue on Evolutionary Computing, vol. 5, no. 1, pp. 96-101, 1994.

    Google Scholar 

  52. M. Iosifescu, Finite Markov Processes and Their Applications, Wiley: Chichester, 1980.

    Google Scholar 

  53. H. Muhlenbein, “How genetic algorithms really work I: Mutation and hill climbing,” in Parallel Problem Solving from Nature, R. Manner and B. Manderick (Eds.), vol. 2, pp. 15-25, Elsevier Science Publishers: Amsterdan, 1992.

    Google Scholar 

  54. H. Aytug, S. Bhattacharya, and G.J. Koehler, “A Markov Chain analysis of genetic algorithms with power of 2 cardinality alphabets,” European Journal of Operational Research, vol. 96, p. 195, 1996.

    Google Scholar 

  55. J. Suzuki, “A Markov Chain analysis of simple genetic algorithms,” IEEE Trnasactions on Systems, Man, and Cybernetics, vol. 25, no. 4, p. 655, 1995.

    Google Scholar 

  56. N.G. Gayyord, “Copolymers, polyblends and composites,” Adv. Chem. Ser., vol. 76, p. 142, 1975.

    Google Scholar 

  57. P.A. Small, “Some factors affecting the solubility of polymers,” J. Appl. Chem., vol. 3, p. 71, 1953.

    Google Scholar 

  58. L.A. Utracki, Polymer Alloys and Blends, Hanser Publishers: Munich, 1989.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, N., Potter, W. & Landau, D. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains. Applied Intelligence 20, 215–229 (2004). https://doi.org/10.1023/B:APIN.0000021414.50728.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APIN.0000021414.50728.34

Navigation