Skip to main content
Log in

A Smart Single-Chip Micro-Hotplate-Based Gas Sensor System in CMOS-Technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a monolithic chemical gas sensor system fabricated in industrial CMOS-technology combined with post-CMOS micromachining. The system comprises metal-oxide-covered (SnO2) micro-hotplates and the necessary driving and signal-conditioning circuitry. The SnO2 sensitive layer is operated at temperatures between 200 and 350°C. The on-chip temperature controller regulates the temperature of the membrane up to 350°C with a resolution of 0.5°C. A special heater-design was developed in order to achieve membrane temperatures up to 350°C with 5 V supply voltage. The heater design also ensures a homogeneous temperature distribution over the heated area of the hotplate (1–2% maximum temperature fluctuation). Temperature sensors, on- and off-membrane (near the circuitry), show an excellent thermal isolation between the heated membrane area and the circuitry-area on the bulk chip (chip temperature rises by max 6°C at 350°C membrane temperature). A logarithmic converter was included to measuring the SnO2 resistance variation upon gas exposure over a range of four orders of magnitude. An Analog Hardware Description Language (AHDL) model of the membrane was developed to enable the simulations of the complete microsystem. Gas tests evidenced a detection limit below 1 ppm for carbon monoxide and below 100 ppm for methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bârsan and U. Weimar, “Conduction model of metal oxide gas sensors.” Journal of Electroceramics, vol. 7, pp. 143–167, 2001.

    Google Scholar 

  2. I. Simon, N. Bârsan, M. Bauer, and U. Weimar, “Micromachined metal oxide gas sensors: Opportunities to improve sensor performance.” Sensors and Actuators, vol. B 73, pp. 1–26, 2001.

    Google Scholar 

  3. V. Demarne and A. Grisel, “An integrated low-power thin-film co gas sensor on silicon.” Sensors and Actuators, vol. 13, pp. 301–313, 1988.

    Google Scholar 

  4. J.S. Suehle, R.E. Cavicchi, M. Gaitan, and S. Semancik, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing.” IEEE Electron Devices Letters, vol. 14, pp. 118–120, 1993.

    Google Scholar 

  5. S. Semancik, R.E. Cavicchi, M.C. Wheeler, J.E. Tiffany, G.E. Poirier, R.M. Walton, J.S. Suehle, B. Panchapakesan, and D.L. DeVoe, “Microhotplate platforms for chemical sensor research.” Sensors and Actuators, vol. B 77, pp. 579–591, 2001.

    Google Scholar 

  6. D. Briand, A. Krauss, B. van der Schoot, U. Weimar, N. Barsan, W. Göpel, and N.F. de Rooij, “Design and fabrication of high temperature micro-hotplates for drop-coated gas sensors.” Sensors and Actuators, vol. B 68, pp. 223–233, 2000.

    Google Scholar 

  7. A. Götz, J. Gràcia, J.A. Plaza, C. Cané, P. Roetsch, H. Böttner, and K. Seibert, “A novel methodology for manufacturability of robust CMOS semiconductor gas sensor arrays.” Sensors and Actuators, vol. B 77, pp. 395–400, 2001.

    Google Scholar 

  8. N. Najafi, K.D. Wise, R. Merchant, and J.W. Schwank, “An Integrated multi-element ultra-thin-film gas analyzer.” Digest IEEE Solid-State Sensor and Actuator Workshop, pp. 19–22, 1992.

  9. G.C. Cardinali, L. Dori, M. Fiorini, I. Sayago, G. Faglia, C. Perego, G. Sberveglieri, V. Liberali, F. Maloberti, and D. Tonietto, “A smart sensor system for carbon monoxide detection.” Analog Integrated Circuits and Signal Processing, vol. 14, pp. 275–296, 1997.

    Google Scholar 

  10. P.F. Rüedi, P. Heim, A. Mortara, E. Franzi, H. Oguey, and X. Arreguit, “Interface circuit for metal-oxide gas sensor.” In IEEE 2001 Custom Integrated Circuits Conference, 2001, pp. 109–112.

  11. D. Barrettino, M. Graf, M. Zimmermann, A. Hierlemann, H. Baltes, S. Hahn, N. Bârsan, and U. Weimar, “A smart singlechip micro-hotplate-based chemical sensor system in CMO-Stechnology.” In Proceedings of the IEEE International Symposium on Circuits and Systems, 2002, vol. 2, pp. 157–160.

    Google Scholar 

  12. M.Y. Afridi, J.S. Suehle, M.E. Zaghloul, D.W. Berning, A.R. Hefner, S. Semancik, and R.E. Cavicchi, “A monolithic implementation of interface circuitry for CMOS compatible gas sensor system.” In Proceedings of the IEEE International Symposium on Circuits and Systems, 2002 vol. 2, pp. 732–735, and “A monolithic CMOS microhotplate-based gas sensor system.” IEEE Sensors Journal, vol. 2, no. 6, pp. 644-655, 2002.

    Google Scholar 

  13. Y. Mo, Y. Okawa, K. Inoue, and K. Natukawa, “Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array.” Sensors and Actuators, vol. A 100, pp. 94–101, 2002.

    Google Scholar 

  14. A. Heilig, N. Bârsan, U. Weimar, M. Schweizer-Berberich, J.W. Gardner, and W. Göpel, “Gas identification by modulating temperatures of SnO2-based thick film sensors.” Sensors and Actuators, vol. B 43, pp. 45–51, 1997.

    Google Scholar 

  15. T.A. Kunt, T.J. McAvoy, R.E. Cavicchi, and S. Semancik, “Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors.” Sensors and Actuators, vol. B 53, pp. 24–43, 1998.

    Google Scholar 

  16. A. Hierlemann, M. Schweizer-Berberich, U. Weimar, G. Kraus, A. Pfau, and W.Göpel, “Pattern recognition and multicomponent analysis.” Sensors Update, vol. 2, VCH, pp. 119–180, 1996.

    Google Scholar 

  17. austriamicrosystems, Unterpremstaetten, Austria. www. austriamicrosystems.com.

  18. T. Müller, M. Brandl, O. Brand, and H. Baltes, “An industrial CMOSprocess family adapted for the fabrication of smart silicon sensors.” Sensors and Actuators, vol. A 84, pp. 126–133, 2000.

    Google Scholar 

  19. M. Graf, D. Barrettino, M. Zimmermann, A. Hierlemann, H. Baltes, S. Hahn, N. Bârsan, and U. Weimar, “CMOS monolithic metal-oxide sensor system compromising a microhotplate and associated circuitry.” IEEE Sensors Journal, vol. 4, pp. 9–16, 2004.

    Google Scholar 

  20. J.J.F. Rijns, “CMOS low-distortion high-frequency variablegain amplifier.” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 1029–1034, 1996.

    Google Scholar 

  21. R.J. Baker, H.W. Li, and D.E. Boyce, CMOS Circuit Design, Layout, and Simulation. IEEE Press, 1998.

  22. D. Gibson, H. Carter, and C. Purdy, “The use of hardware description languages in the development of microelectromechanical systems.” Analog Integrated Circuits and Signal Processing, vol. 28, pp. 173–180, 2001.

    Google Scholar 

  23. Cadence Design Systems, Inc., Spectre Reference, Introducing the spectre simulator, analog HDLs, Dec. 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Barrettino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrettino, D., Graf, M., Zimmermann, M. et al. A Smart Single-Chip Micro-Hotplate-Based Gas Sensor System in CMOS-Technology. Analog Integrated Circuits and Signal Processing 39, 275–287 (2004). https://doi.org/10.1023/B:ALOG.0000029663.89451.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ALOG.0000029663.89451.a0

Navigation