Skip to main content
Log in

Effect of solution heat treatment and additives on the hardness, tensile properties and fracture behaviour of Al-Si (A413.1) automotive alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was carried out to determine the role of Mg, Cu, Be, Ag, Ni, and Zn additives during the solution heat treatment of grain refined, Sr-modified eutectic A413.1 (Al-11.7% Si) alloy, and their consequent effect on mechanical properties. For comparison purposes, some of the alloys were also studied in the non-modified condition. The alloys were cast in the form of test bars using a steel permanent mold preheated at 425°C that provided a microstructure with an average dendrite arm spacing (DAS) of ∼22 μm. The test bars were solution heat treated at 500 ± 2°C for times up to 24 h, followed by artificial aging at 155°C for 5 h (T6 treatment). Tensile and hardness tests were carried out on the heat-treated test bars. Details of the microstructural evaluation are reported in a previous article [1].

With respect to the mechanical properties, it is found that the hardness and strength (YS, UTS) of Mg-containing alloys decrease with the addition of Sr due to the sluggish dissolution of the Al5Cu2Mg8Si6 phase during solution treatment, and a delay in the precipitation of Mg2Si or Al2MgCu phases during artificial aging thereafter. The properties of the Cu-containing alloys, however, remain unaffected by the addition of Sr. With the exception of Ni, all alloying elements used improve hardness and strength, particularly after heat treatment. In the case of Ni, addition of up to 1.41% Ni is observed to decrease the mechanical properties in the T6 condition.

Fracture of non-modified alloys takes place through crack initiation within the brittle acicular Si particles without the crack passing through the ductile Al matrix. In the Sr-modified alloys, the fracture is of ductile type, as evidenced by the pinpoint nature of the α-Al dendrites on the fracture surface. The number of cracked Si particles and intermetallics beneath the fracture surface increases in proportion to the increase in alloy strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Moustafa, F. H. Samuel and H. W. Doty, J. Mater. Sci. 38 (2003) 4543.

    Google Scholar 

  2. K. Kaneko, S. Hayashi, A. Mochizuki, M. Aono, K. Ikeda and K. Toyose, JSAE Rev. 15(4) (1994) 367.

    Google Scholar 

  3. T. A. Barnes and I. R. Pashby, Pt I & II, J. Mater. Proc. Techn. 99(1-3) (2000) 62, 72.

    Google Scholar 

  4. H. Nakanishi, K. Kakihara, A. Nakayama and T. Murayama JSAE Rev. 23(3) (2002) 365.

    Google Scholar 

  5. T. Desaki and S. Kamiya, ibid. 21(1) (2000) 143.

    Google Scholar 

  6. P. Kapranos, D. H. Kirkwood, H. V. Atkinson, J. T. Rheinlander, J. J. Bentzen, P. T. Toft, C. P. Debel, G. Laslaz, L. Maenner, S. Blais, J. M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta and A. Giese, J. Mater. Proc. Techn. 135(2/3) (2003) 271.

    Google Scholar 

  7. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De smet, A. Haszler and A. Vieregge, Mater. Sci. Engng. A 280(1) (2000) 37.

    Google Scholar 

  8. T.-S. Shih and F.-S. Shih, Int. J. Cast Met. Res. 10 (1998) 273.

    Google Scholar 

  9. A. M. Samuel, P. Ouellet, F. H. Samuel and H. W. Doty, AFS Trans. 105 (1997) 951.

    Google Scholar 

  10. C. W. Meyers, K. H. Hinton and J. S. Chou, Mater. Sci. Forum 102-104 (1992) 75.

    Google Scholar 

  11. D. Apelian, S. Shivkumar and G. Sigworth, AFS Trans. 97 (1989) 727.

    Google Scholar 

  12. O. Engler and J. Hirsch, Mater. Sci. Engng. A 336(1/2) (2002) 249.

    Google Scholar 

  13. M. Jain, J. Allin and M. J. Bull, Mater. Sci. Engng. A 256(1/2) (1998) 69.

    Google Scholar 

  14. H. Hayashi and T. Nakagawa, J. Mater. Proc. Techn. 46(3/4) (1994) 455.

    Google Scholar 

  15. Alloy Digest, Data on Worldwide Metals and Alloys, May 1985.

  16. S. Shivkumar, S. Ricci, Jr., B. Steenhoff, D. Apelian and G. Sigworth, AFS Trans. 97 (1989) 791.

    Google Scholar 

  17. J. F. Mondolfo, “Aluminum Alloys: Structure and Properties” (Butterworth and Co., London, 1976).

    Google Scholar 

  18. M. A. Moustafa, F. H. Samuel, H. W. Doty and S. Valtierra, Int. J. Cast Met. Res. 14 (2002) 235.

    Google Scholar 

  19. Gholamali F. C. Morvari, M. Eng. Thesis, UQAC, Chicoutimi,Canada, October 1999.

    Google Scholar 

  20. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy” (American Society for Metals, Metals Park, OH, 1984).

    Google Scholar 

  21. R. W. Bruner, “Die Casting Alloys” (SDCE Supplement, Warren, MI, 1976).

    Google Scholar 

  22. D. L. Colwell, AFS Trans. 60 (1952) 87.

    Google Scholar 

  23. M. Drouzy, S. Jacob and M. Richard, AFS Int. Cast Met. Res. J. June (1980) 43.

  24. H. J. Li, S. S. Shivkumar, X. J. Luo and D. Apelian, Cast Met. 1 (1989) 227.

    Google Scholar 

  25. B. A. Parker, D. S. Saunders and J. R. Griffiths, Met. Forum 5 (1982) 48.

    Google Scholar 

  26. A. Saigal and J. Berry, AFS Trans. 93 (1983) 699.

    Google Scholar 

  27. C. Lepage, M. Eng. Thesis, UQAC, Chicoutimi, Canada, 2002, Unpublished results.

    Google Scholar 

  28. D. A. Granger, R. R. Sawtell and M. M. Kersker, AFS Trans. 92 (1984) 579.

    Google Scholar 

  29. P. S. Wang, Y. J. Liauh, S. L. Lee and J. C. Lin, Mater. Chem. Phys. 53 (1998) 195.

    Google Scholar 

  30. S. Murali, A. Trivedi, K. S. Shamanna and K. S. S. Murthy, Mater. Eng. Perform. 5 (1996) 462.

    Google Scholar 

  31. A. M. Samuel, F. H. Samuel, C. Villeneuve, H. W. Doty and S. Valtierra, Int. J. Cast Met. Res. 14 (2001) 97.

    Google Scholar 

  32. S. Murali, K. S. Raman and K. S. S. Murthy, Mater. Sci. and Engng. A 190 (1995) 165.

    Google Scholar 

  33. S. Murali, Cast Met. 6 (1994) 189.

    Google Scholar 

  34. M. A. Moustafa, C. Lepage, F. H. Samuel and H. W. Doty, Int. J. Cast Met. Res. 15 (2003) 609.

    Google Scholar 

  35. G. W. Powell, Mater. Character. (1994) 275.

  36. M. Lebyodkin, A. Deschamps and Y. Brechet, Mater. Sci. Engng. (1997) 481.

  37. A. Gangulee and J. Gurland, Trans. Met. Soc. AIME 239 (1967) 239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustafa, M.A., Samuel, F.H. & Doty, H.W. Effect of solution heat treatment and additives on the hardness, tensile properties and fracture behaviour of Al-Si (A413.1) automotive alloys. Journal of Materials Science 38, 4523–4534 (2003). https://doi.org/10.1023/A:1027385619114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027385619114

Keywords

Navigation