Skip to main content
Log in

Immortalized Schwann Cells Express Endothelin Receptors Coupled to Adenylyl Cyclase and Phospholipase C

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Endothelins (ETs) are potent regulators of renal, cardiovascular and endocrine functions and act as neurotransmitters in the CNS. Here we report that immortalized Schwann cells express receptors for ETs and characterize some of the cellular events triggered by their activation. Specific binding of [125I]-ET-1 to Schwann cell membranes was inhibited by ET-1 and the ETB-selective agonists ET-3, sarafotoxin 6c and [A1a1,3,11,15]-ET-1 with IC50cor values ranging between 2 and 20 nM. No competition was observed with the ETA receptor-selective antagonist BQ123. Incubation of [3H]-inositol pre-labeled Schwann cells with ET-1, ET-3 or sarafotoxin 6c elicited a concentration-dependent increase in the release of IP1 that reached a plateau at approximately 100 nM. The efficacy of [Ala1,3,11,15]-ET-1 (a linear peptide analog of ET-1) was half of that corresponding to ET-1. These stimulatory effects were partially blocked by pre-incubation with pertussis toxin. When Schwann cells were incubated in the presence of 100 nM ET-1 or ET-3 there was a significant inhibition of basal and isoproterenol-stimulated cAMP levels. The inhibitory effects of sarafotoxin 6c and [Ala1,3,11,15]-ET-1 on isoproterenol-stimulated cAMP levels were similar to that observed with ET-1. Pre-incubation with pertussis toxin completely prevented this effect. These observations indicate that immortalized Schwann cells express receptors for ET peptides (predominantly ETB) coupled to modulation of phospholipase C and adenylyl cyclase activities. The actions of ETs on Schwann cells provide a novel example of the influence of vascular factors on nerve function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wood, P. M., and Bunge, R. P. 1975. Evidence that sensory axons are mitogenic for Schwann cells. Nature 256:662–664.

    Google Scholar 

  2. McCarthy, K. D., and Partlow, L. M. 1976. Neuronal stimulation of [3H]-thymidine incorporation by primary cultures of highly purified non-neuronal cells. Brain Res. 114:415–426.

    Google Scholar 

  3. Yoshino, J. E., Dinneen, M. P., Lewis, B. L., Meador-Woodruff, J. H., and DeVries, G. H. 1984. Differential proliferative response of cultured Schwann cells to axolemma-and myelin-enriched fractions. I. Biochemical studies. J. Cell Biol. 99:2309–2313.

    Google Scholar 

  4. Jessen, K. R., and Mirsky, R. 1991. Schwann cell precursors and their development. Glia 4:185–194.

    Google Scholar 

  5. Eccleston, P. A., Jessen, K. R., and Mirsky, R. 1989. Transforming growth factor-β and γ-interferon have dual effects on growth of peripheral glia. J. Neurosci. Res. 24:524–530.

    Google Scholar 

  6. Ridley, A. D., Davis, J. B., Stroobant, P., and Land, H. 1989. Transforming growth factors-β1 and β2 are mitogens for Schwann cells. J. Cell Biol. 109:3419–3424.

    Google Scholar 

  7. Schubert, D. (1992). Synergistic interactions between transforming growth factor beta and fibroblast growth factor regulate Schwann cell mitosis. J. Neurobiol. 23:143–148.

    Google Scholar 

  8. Jung-Testas, I., Schumacher, M., Bugnard, H., and Baulieu, E.-E. 1993. Stimulation of rat Schwann cell proliferation by estradiol: synergism between the estrogen and cAMP. Dev. Brain Res. 72:282–290.

    Google Scholar 

  9. Jung-Testas, I., Schumacher, M., Robel, P., and Baulieu, E.-E. 1994. Actions of steroid hormones and growth factors on glial cells of the Central and Peripheral Nervous System. J. Steroid Biochem. Molec. Biol. 48:145–154.

    Google Scholar 

  10. Yoshimura, T., Goda, S., Kobayashi, T., and Goto, I. 1993. Involvement of protein kinase C in the proliferation of cultured Schwann cells. Brain Res. 617:55–60.

    Google Scholar 

  11. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.

    Google Scholar 

  12. Huggins, J. P., Pelton, J. T., and Miller, R. C. 1993. The structure and specificity of endothelin receptors: Their importance in physiology and medicine. Pharmac. Ther. 59:55–123.

    Google Scholar 

  13. Karne, S., Jayawickreme, C. K., and Lerner, M. R. (1993). Cloning and characterization of an endothelin-3 specific receptor (ET(c) receptor) from Xenopus Laevis dermal melanophores. J. Biol. Chem. 268:19126–19133.

    Google Scholar 

  14. Sokolovsky, M. 1993a. Functional coupling between endothelin receptors and multiple G-proteins in rat heart myocytes. Receptors and Channels 1:295–304.

    Google Scholar 

  15. Sokolovsky, M. 1993b. Endothelin receptors in rat cerebellum: Activation of phosphoinositide hydrolysis is transduced by multiple G-proteins. Cellular Signaling 5:473–483.

    Google Scholar 

  16. Jouneaux, C., Mallat, A., Serradeil-Le Gal, C., Goldsmith, P., Hanoune, J., and Lotersztajn, S. 1994. Coupling of endothelin B receptors to the calcium pump and phospholipase C vis Gs and Gq in rat liver. J. Biol. Chem. 269:1845–1851.

    Google Scholar 

  17. Lysko, P. G., Feuerstain, G., Pullen, M., Wu, H.-L., and Nambi, P. 1991. Identification of endothelin receptors in cultured cerebellar neurons. Neuropeptides 18:83–86.

    Google Scholar 

  18. Fuxe, K., Tinner, B., Staines, W., Hemsen, A., Hersh, L., and Lundberg, J. M. 1991. Demonstration and nature of endothelin-3 immunoreactivity in somatostatin and choline acetyltransferase-immunoreactive nerve cells of the neostriatum of the rat. Neurosci. Lett. 123:107–111.

    Google Scholar 

  19. Krsmanovic, L. Z., Stojilkovic, S. S., Balla, T., Al-Damluji, S., Weiner, R. I., and Katt, K. J. 1991. Receptors and neurosecretory actions of endothelin in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 88:1124–1128.

    Google Scholar 

  20. Lyons, S. A., Morell, P., and Mc Carthy, K. D. 1994. Schwann cells exhibit P2Y purinergic receptors that regulate intracellular calcium and are up-regulated by cyclic AMP analogues. J. Neurochem. 63:552–560.

    Google Scholar 

  21. MacCumber, M. W., Ross, C. A., and Snyder, S. H. 1990. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA 87:2359–2363.

    Google Scholar 

  22. Marsault, R., Vigne, P., Breittmeyer, J. P., and Frelin, C. 1990. Astrocytes are target cells for endothelins and sarafotoxin. J. Neurochem. 54:2142–2144.

    Google Scholar 

  23. Ehrenreich, H., Kehr, J. H., Anderson, R. W., Rieckman, P., Vitkovic, L., Coligan, J. E., and Fauci, A. S. 1991. The vasoactive peptide, endothelin-3, is produced by and specifically binds to primary astrocytes. Brain Res. 538:54–58.

    Google Scholar 

  24. Couraud, P.-O., Durieu-Trautman, O., Le Nguyen, D., Marin, P., Glibert, F., and Strosberg, D. 1991. Functional endothelin-1 receptors in rat astrocytoma C6. Eur. J. Pharmacol. 206:191–198.

    Google Scholar 

  25. Marin, P., Delumeau, J.-C., Durie-Trautman, O., Le Nguyen, D., Premont, J., Strosberg, A. D., and Couraud, P.-O. 1991. Are several G proteins involved in the different effects of endothelin-1 in mouse striatal astrocytes? J. Neurochem. 56:1270–1275.

    Google Scholar 

  26. Levin, E. R., Frank, H. J. L., and Pedram, A. 1992. Endothelin receptors on cultured fetal diencephalic glia. J. Neurochem. 58:659–666.

    Google Scholar 

  27. Ladoux, A., and Frelin, C. 1991. Endothelins inhibit adenylate cyclase in brain capillary endothelial cells. Biochem. Biophys. Res. Comm. 180:169–173.

    Google Scholar 

  28. Ambar, I., and Sokolovsky, M. 1993. Endothelin receptors stimulate both phospholipase C and phospholipase D activities in different cell lines. Eur. J. Pharmacol. 245:31–41.

    Google Scholar 

  29. Lin, W., and Chuang, D. 1993. Endothelin-and ATP-induced inhibition of adenylyl cyclase activity in C6 glioma cells: role of Gi and calcium. Mol. Pharmacol. 44:158–165.

    Google Scholar 

  30. Chau, L. Y., Lin, A., Chang, W. T., Chen, C. H., Shue, M. J., Hsu, Y. S., Hu, C. Y., Tsai, W. H., and Sun, G. Y. 1993. Endothelin-mediated calcium response and inositol 1,4,5-trisphosphat release in neuroblastoma-glioma hybrid cells (NG108–15): Cross talk with ATP and bradykinin. J. Neurochem. 60:454–460.

    Google Scholar 

  31. Koizumi, S., Kataoka, Y., Niwa, M., Yamashita, K., Taniyama, K., and Kudo, Y. 1994. Endothelin increased [Ca2+]i in cultured neurons and slices of rat hippocampus. Neuroreport 5:1077–1080.

    Google Scholar 

  32. Cazaubon, S. M., Parker, P. J., Strosberg, A. D., and Couraud, P. 1993. Endothelins stimulate tyrosine phosphorylation and activity of p42/mitogen-activated protein kinase in astrocytes. Biochem. J. 293:381–386.

    Google Scholar 

  33. Cazaubon, S. M., Ramos-Morales, F., Fischer, S., Schweighoffer, F., Strosberg, A. D., and Couraud, P. 1994. Endothelins induces tyrosine phosphorylation and GRB2 association of Shc in astrocytes. J. Biol. Chem. 269:24805–24809.

    Google Scholar 

  34. Sedo, A., Provero, P., Revoltella, R. P., Di Bartolo, V., Beffy, P., and Mizrahi, J. 1993. BQ123 inhibits both endothelin-1 and endothelin-3 mediated C6 rat glioma cell proliferation suggesting an atypical endothelin receptor. J. Bio Regulators & Homeostatic Agents 7:95–98.

    Google Scholar 

  35. Hu, R., and Levin, E. 1994. Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor. J. Clin. Invest. 93:1820–1827.

    Google Scholar 

  36. Giaid, A., Gibson, S. J., Ibrahaim, N. B. N., Legon, S., Bloom, S., Yanagisawa, M., Masaki, T., Varndell, I. M., and Polak, J. M. 1989. Endothelin-1, and endothelium-derived peptide, is expressed in neurons of the human spinal cord and dorsal root ganglia. Proc. Natl. Acad. Sci. USA 86:7634–7638.

    Google Scholar 

  37. Eaker, E., Sallustio, J., Kohler, J., and Visner, G. 1995. Endothelin-1 expression in myenteric neurons cultured from rat small intestine. Regul. Peptides 55:167–177.

    Google Scholar 

  38. Wiklund, N. P., Ohlen, A., and Cederqvist, B. 1989a. Adrenergic modulation by endothelin in guinea pulmonary artery. Neurosci. Letters 101:269–273.

    Google Scholar 

  39. Wiklund, N. P., Wiklund, C. U., Ohlen, A., and Gustafsson, L. E. 1989b. Cholinergic modulation by endothelin in guinea pig ileum. Neurosci. Letters 101:342–346.

    Google Scholar 

  40. Hosoda, K., Hammer, R. E., Richardson, J. A., Baynash, A. G., Cheung, J. C., Giaid, A., and Yanagisawa, M. 1994. Targeted and natural (Piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276.

    Google Scholar 

  41. Baynash, A. G., Hosoda, K., Giaid, A., Richardson, J., Emoto, N., Hammer, R. E., and Yanagisawa, M. 1994. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285.

    Google Scholar 

  42. Puffenberger, E. G., Hosoda, K., Washington, S. S., Nakao, K., deWit, D., Yanagisawa, M., and Chakravarti, A. 1994. A missense mutation of the endothelin-B receptor gene in multigenic Hirschprung's disease. Cell 79:1257–1266.

    Google Scholar 

  43. Wilkins, P., Suchovsky, D., and Berti-Mattera, L. N. 1994. Endothelin effects in immortalized Schwann cells signaling. Trans. Am. Soc. Neurochem. 25:338.

    Google Scholar 

  44. Porter, S., Glaser, L., and Bunge, R. P. 1987. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc. Natl. Acad. Sci. USA. 83:7768–7771.

    Google Scholar 

  45. Berti-Mattera, L. N., Douglas, J. G., Mattera, R., and Goraya, T. Y. 1992. Identification of G protein subtypes in peripheral nerve and cultured Schwann cells. J. Neurochem. 59:1729–1735.

    Google Scholar 

  46. Goraya, T. Y., Wilkins, P., Douglas, J. G., Zhou, J., and Berti-Mattera, L. N. 1995. Signal transduction alterations in peripheral nerves from streptozotocin-induced diabetic rats. J. Neurosci. Res. 41:518–525.

    Google Scholar 

  47. Brooker, G., Harper, J. F., Terasaki, W. L., and Moylan, R. D. 1979. Radio-immunoassay of cyclic AMP and cyclic GMP. Advances in Cyclic Nucleotide Res. 10:1–33.

    Google Scholar 

  48. Lademheim, R. G., Lacroix, I., Foignant-Chaverot, N., Strosberg, A. D., and Couraud, P. O. 1993. Endothelins stimulate c-fos and nerve growth factor expression in astrocytes and astrocytoma. J. Neurochem. 60:260–266.

    Google Scholar 

  49. Tencé, M., Cordier, J., Glowinski, J., and Prémont, J. 1992. Endothelin-evoked release of arachidonic acid from mouse astrocytes in primary culture. Eur. J. Neurosci. 4:993–999.

    Google Scholar 

  50. Berti-Mattera, L. N., Wilkins, P. L., Madhun, Z., and Suchovsky, D. 1996. P2-purinergic receptors regulate phospholipase C and adenylate cyclase activity in immortalized Schwann cells. Biochem. J. 314:555–561.

    Google Scholar 

  51. Nishiyama, M., Moroi, K., Shan, L-H., Yamamoto, M., Takasaki, C., Masaki, T., and Kimura, S. (1995). Two different endothelin B receptor subtypes mediate contraction of the rabbit saphenous vein. Jpn. J. Pharmacol. 68:235–243.

    Google Scholar 

  52. Douglas, S., A., Meek, T. D., and Ohlstein, E. H. 1994. Novel receptor antagonists welcome a new era in endothelin biology. Trends Pharmacol. Sci. 10:313–316.

    Google Scholar 

  53. Karaki, H., Sudjarwo, S. A., and Hori, M. 1994. Novel antagonist of endothelin ETB1 and ETB2 receptors, BQ-788: Effects on blood vessel and small intestine. Biochem. Biophys. Res. Comm. 205:168–173.

    Google Scholar 

  54. Kataoka, Y., Koizumi, S., Niwa, M., Shibaguchi, H., Shigematsu, K., Kudo, Y., and Taniyama, K. 1994. Endothelin-3 stimulates inositol 1,4,5-trisphosphate production and Ca2+ influx to produce biphasic dopamine release from rat striatal slices. Cell. Mol. Neurobiol. 14:271–280.

    Google Scholar 

  55. Kohzuma, M., Kataoka, Y., Koizumi, S., Shibaguchi, H., N-Nakashima, M., Yamashita, K., Niwa, M., and Taniyama, K. 1994. ETB receptor involvement in stimulatory and neurotoxic action on dopamine neurons. Neuroreport 5:2653–2656.

    Google Scholar 

  56. Fukamauchi, F., and Chuang, D-M 1994. Endothelin-1 increases the levels of mRNA and protein of muscarinic acetylcholine receptors and c-fos mRNA in cerebellar granule cells. FEBS Lett. 348:263–267.

    Google Scholar 

  57. Kamei, J., Hitosugi, H., Kawashima, N., Misawa, M., and Kasuya, Y. 1993. Antinociceptive effects of intratechally administered endothelin-1 in mice. Neurosci. Lett. 153:69–72.

    Google Scholar 

  58. Yamamoto, T., Shimoyama, N., Asano, H., and Mitzuguchi, T. 1994. Analysis of the role of endothelin-A and endothelin-B receptors on nociceptive information transmission in the spinal cord with FR 139317, an endothelin-A receptor antagonist, and sarafotoxin S6c, an endothelin-B receptor agonist. J. Pharmacol. Exp. Ther. 271:156–163.

    Google Scholar 

  59. Power, R. F., Wharton, J., Salas, S. P., Kanse, S., Ghatei, M., Bloom, S. R., and Polak, J. M. 1989. Autoradiographic localisation of endothelin binding sites in human and porcine coronary arteries. Eur. J. Pharmacol. 160:199–200.

    Google Scholar 

  60. Wilkins, P., Madhun, Z., and Berti-Mattera, L. N. 1995. ET-1 influences [3H]-thymidine uptake and [Ca2+]i in immortalized Schwann cells concomitantly with the induction of morphological changes. J. Neurochem. 64(Supl.):S68.

    Google Scholar 

  61. Sobue, G., Shuman, S., and Pleasure, D. 1986. Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res. 362:23–32.

    Google Scholar 

  62. Shuman, S., Hardy, M., Sobue, G., and Pleasure, D. 1988. A cyclic AMP analogue induces synthesis of myelin-specific glycoprotein by cultured Schwann cells. J. Neurochem. 50:190–194.

    Google Scholar 

  63. Lemke, G., and Chao, M. 1988. Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 102:499–504.

    Google Scholar 

  64. Goda, S., Hammer, J., and Quarles, R. H. 1989. MAG expression in cultured Schwann cells is induced by elevation of cAMP. Trans. Am. Soc. Neurochem. 21:240.

    Google Scholar 

  65. Goda, S., Hammer, J., Kobiler, D., and Quarles, R. H. 1991. Expression of myelin-associated glycoprotein in cultures of immortalized Schwann cells. J. Neurochem. 56:1354–1361.

    Google Scholar 

  66. Morgan, L., Jessen, K. R., and Mirsky, R. 1991. The effects of cAMP on differentiation of cultured Schwann cells: Progression from and early phenotype (04+) to a myelin phenotype (Po+, GFAP, N-CAM, NGF-receptor) depends on growth inhibition. J. Cell Biol. 112:457–467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkins, P.L., Suchovsky, D. & Berti-Mattera, L.N. Immortalized Schwann Cells Express Endothelin Receptors Coupled to Adenylyl Cyclase and Phospholipase C. Neurochem Res 22, 409–418 (1997). https://doi.org/10.1023/A:1027351525446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027351525446

Navigation