Skip to main content
Log in

The Energy Equation in the Lower Solar Convection Zone

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, SΩ(r), where r is the radial coordinate. If the rotation law and SΩ(r) are known, then the solution of the energy equation, performed in this paper in the framework of the MLΩ formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The MLΩ-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,θ)=P 2(cosθ)ψ2(r)/r 2ρ+P 4(cosθ)ψ4(r)/r 2 ρ+..., and a corresponding equation for U θ(r,θ). Here θ is the polar angle, ρ is the density, and P 2(cosθ), P 4(cosθ) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting ψ4(r)=−Hψ2(r) with H≈−1.6, a constant. The value of ψ2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Böhm, K. H. and Stückl, E.: 1967, Z. Astrophys. 66, 487.

    Google Scholar 

  • Braun, D. C. and Fan, Y.: 1998, Astrophys. J. 508, L105.

    Google Scholar 

  • Brun, A. S. and Toomre, J.: 2002, Astrophys. J. 570, 865.

    Google Scholar 

  • Canuto, V. M., Minotti, F. O., and Schilling, O.: 1994, Astrophys. J. 425, 303.

    Google Scholar 

  • Canuto, V. M. and Minotti, F. O.: 2001, Monthly Not. Royal Astron. Soc. 328, 829.

    Google Scholar 

  • Charbonneau, P. and MacGregor, K. B.: 1997, Astrophys. J. 486, 502.

    Google Scholar 

  • Charbonneau, P. and Dikpati, M.: 2000, Astrophys. J. 543, 1027.

    Google Scholar 

  • Charbonneau, P.: 2001, Solar Phys. 199, 385.

    Google Scholar 

  • Choudhuri, A. R.: 2003, Solar Phys., in press.

  • Choudhuri, A. R., Schüssler, M., and Dikpati, M.: 1995, Astron. Astrophys. 303, L29.

    Google Scholar 

  • Cowling, T. G.: 1951, Astrophys. J. 114, 272.

    Google Scholar 

  • Dikpati, M. and Charbonneau, P: 1999, Astrophys. J. 518, 508.

    Google Scholar 

  • Durney, B. R.: 1983, Astrophys. J. 269, 671.

    Google Scholar 

  • Durney, B. R.: 1985, Astrophys. J. 297, 787.

    Google Scholar 

  • Durney, B. R.: 1996, Solar Phys. 169, 1 (Paper P1).

    Google Scholar 

  • Durney, B. R.: 1997, Astrophys. J. 486, 1065.

    Google Scholar 

  • Durney, B. R.: 1998, Solar Phys. 180, 1.

    Google Scholar 

  • Durney, B. R.: 1999, Astrophys. J. 511, 945.

    Google Scholar 

  • Durney, B. R.: 2000a, Solar Phys. 196, 1.

    Google Scholar 

  • Durney, B. R.: 2000b, Solar Phys. 197, 215.

    Google Scholar 

  • Durney, B. R.: 2001, Solar Phys. 202, 201 (Paper P2).

    Google Scholar 

  • Durney, B. R. and Spruit, H. C.: 1979, Astrophys. J.. 234, 1067 (Paper DS).

    Google Scholar 

  • Elliott, J. R., Miesch, M. S., and Toomre, J.: 2000, Astrophys. J. 533, 546.

    Google Scholar 

  • Ferriz-Mas, A., Schmitt, D., and Schüssler, M.: 1994, Astron. Astrophys. 289, 949.

    Google Scholar 

  • Flaser, F. M. and Gierash, P.: 1978, Geophys. Astrophys. Fluid Dyn. 10, 175.

    Google Scholar 

  • Giles, P. M., Duvall, T. L. Jr., Scherrer, P. H., and Bogart, R. S.: 1997, Nature 390, 52.

    Google Scholar 

  • Giles, P. M., Duvall, T. L. Jr., and Scherrer, P. H.: 1998, in S.G. Korzennik and A. Wilson (eds.), Structure and Dynamics of the Sun and Sun-like Stars, ESA Publications Division, Noordwijk, p. 775.

    Google Scholar 

  • González Hernández, I., Patrón, J., Bogart, R. S. et al.: 1998, in S.G. Korzennik and A.Wilson (eds.), Structure and Dynamics of the Sun and Sun-like Stars, ESA Publications Division, Noordwijk, p. 587.

    Google Scholar 

  • Haber, D. A. et al.: 2002, Astrophys. J. 570, 855.

    Google Scholar 

  • Harvey, K. L.: 1992, in K.L. Harvey (ed.), The Solar Cycle, Astronomical Society of the Pacific Conference Series 27, 335.

  • Harvey K. L.: 1993, 'Magnetic Bipoles on the Sun', Ph.D. thesis, Utrecht University.

  • Hathaway, D. H.: 1984, Astrophys. J. 276, 316.

    Google Scholar 

  • Hathaway, D. H., Nandy, B., Wilson, R. M., and Reichman, E. J.: 2003, Astrophys. J., in press.

  • Kitchatinov, L. L. and Rüdiger, G.: 1995, Astron. Astrophys. 299, 446.

    Google Scholar 

  • Kitchatinov, L. L. and Rüdiger, G.: 1999, Astron. Astrophys. 344, 911.

    Google Scholar 

  • Komm, R., Howe, R., Durney, B. R., and Hill, F.: 2003, Astrophys. J., in press.

  • Kosovichev, A. G.: 1996, Astrophys. J. 469, L61.

    Google Scholar 

  • Leighton, R. B.: 1969, Astrophys. J. 156, 1.

    Google Scholar 

  • MacGregor, K. B. and Charbonneau, P.: 1999, Astrophys. J. 486, 484.

    Google Scholar 

  • Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. C., Glatzmaier, G. A., and Gilman, P. A.: 2000, Astrophys. J. 532, 593.

    Google Scholar 

  • Nandy, D. and Choudhuri, A. R.: 2001, Astrophys. J. 551, 576.

    Google Scholar 

  • Nandy, D. and Choudhuri, A. R.: 2002, Science 296, 1671.

    Google Scholar 

  • Parker, E. N.: 1993, Astrophys. J. 408, 707.

    Google Scholar 

  • Rempel, M. and Schüssler, M.: 2001, Astrophys. J. 552, L171.

    Google Scholar 

  • Robinson, F. J. and Chan, K. L.: 2001, Monthly Notices Royal Astron. Soc. 321, 723.

    Google Scholar 

  • Rüdiger, G.: 1989, Differential Rotation and Stellar Convection, Akademie Verlag, Berlin.

    Google Scholar 

  • Rüdiger, G. and Kitchatinov, L. L.: 1996, Astrophys. J. 466, 1078.

    Google Scholar 

  • Schou, J.: 1992, Ph.D Thesis, University Aarhus.

  • Schou, J.: 1999, Astrophys. J. 523, L181.

    Google Scholar 

  • Schou, J. and Bogart, R. S.: 1998, Astrophys. J. 540, L131.

    Google Scholar 

  • Schou, J. et al.: 1998, Astrophys. J. 505, 390.

    Google Scholar 

  • Schüssler, M., Caligari, P., Ferriz-Mas, A., and Moreno-Insertis, F.: 1994, Astron. Astrophys. 281, L69.

    Google Scholar 

  • Snodgrass, H. B. and Dailey, S. B.: 1996, Solar Phys. 163, 21.

    Google Scholar 

  • Spruit, H. C.: 1977, Astron. Astrophys. 55, 151.

    Google Scholar 

  • Spruit, H. C.: 2003, Solar Phys. 213, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durney, B.R. The Energy Equation in the Lower Solar Convection Zone. Solar Physics 217, 1–37 (2003). https://doi.org/10.1023/A:1027324825877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027324825877

Keywords

Navigation