Skip to main content
Log in

Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alumina is resistant against corrosive aqueous solutions and could be used as a reactor material in the Supercritical Water Oxidation (SCWO) process. For this reason, the corrosion resistance of alumina and zirconia toughened alumina (ZTA) ceramics was investigated in aqueous solutions containing 0.1 mol/kg H2SO4, H3PO4 or HCl at T = 240°C–500°C at p = 27 MPa. In sulfuric acid, the solubility of alumina and its corrosion products was high at temperatures of 240°C–290°C. The corrosion rate was still high at higher temperatures (340°C–500°C), but the corrosion products were less soluble and formed a non-protecting scale on the samples. Phosphoric acid was less corrosive due to the formation of berlinite (AlPO4) on the surface of the specimens. In hydrochloric acid, the dissolution of the alumina grains was the predominant corrosion phenomenon at temperatures of 240°C–290°C. At higher temperatures, intergranular corrosion was observed, but a dissolution of the grains did not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. ODA and T. YOSHIHO, J. Am. Ceram. Soc. 80 (1997) 3233.

    Google Scholar 

  2. S. KITAOKA, Y. YAMAGUCHI and Y. TAKAHASHI, ibid. 75 (1992) 3075.

    Google Scholar 

  3. W. DAWIHL and E. KLINGLER, Ber. DKG 44 (1967) 1.

    Google Scholar 

  4. W. GENTHE and H. HAUSNER, in “Euroceramics,” edited by G. de With and R. A. Terpstra (Elsevier Applied Science, London, 1989) p. 3463.

    Google Scholar 

  5. H. HAUSNERIdem., cfi/Ber. DKG 67 (1990) 6.

    Google Scholar 

  6. H. HAUSNERIdem., J. Eur. Ceram. Soc. 9 (1992) 417.

    Google Scholar 

  7. M. MODELL, US Patent 4,338,199, 6.7 (1982).

  8. P. KRITZER, N. BOUKIS and E. DINJUS, Mater. Corros. 48 (1997) 799.

    Google Scholar 

  9. Idem., Proceedings EUROCORR'97, Trondheim, Norway, 22-25 September, 1997, Vol. II, p. 229.

  10. Idem., Corrosion 54 (1998) 824.

    Google Scholar 

  11. Idem., ibid. 54 (1998) 689.

    Google Scholar 

  12. N. BOUKIS, N. CLAUSSEN, K. EBERT, R. JANSSEN and M. SCHACHT, J. Eur. Ceram. Soc. 17 (1997) 71.

    Google Scholar 

  13. N. BOUKIS andM. SCHACHT, DE-Patent 44 43 452 C2, 19.12 (1996).

  14. S. K. ROY and R. L. COBLE, J. Am. Ceram. Soc. 51 (1968) 1.

    Google Scholar 

  15. R. W. GRIMES, ibid. 77 (1994) 378.

    Google Scholar 

  16. W. C. JOHNSON and D. F. STEIN, ibid. 58 (1975) 485.

    Google Scholar 

  17. R. F. COOK and A. G. SCHROTT, ibid. 71 (1988) 50.

    Google Scholar 

  18. S. BAIK and J. H. MOON, ibid. 74 (1991) 819.

    Google Scholar 

  19. K. K. SONI, A. M. THOMPSON, M. P. HARMER, D. B. WILLIAMS, J. M. CHABALA and R. LEVI-SETTI, Appl. Phys. Lett. 66 (1995) 2795.

    Google Scholar 

  20. R. BRYDSON, S. C. CHEN, F. L. RILEY, S. J. MILNE, X. PAN and M. RüHLE, J. Am. Ceram. Soc. 81 (1998) 369.

    Google Scholar 

  21. W. SWIATNICKI, S. LARTIGUE-KORINEK and J. V. LAVAL, Acta metall. mater. 43 (1995) 795.

    Google Scholar 

  22. C. A. HANDWERKER, P. A. MORRIS and R. L. COBLE, J. Am. Ceram. Soc. 72 (1989) 130.

    Google Scholar 

  23. S. C. HANSEN and D. S. PHILLIPS, Phil. Mag. A 47 (1983) 209.

    Google Scholar 

  24. T. SAKUMA, Y. IKUHARA, Y. TAKIGAWA and P. THAVORNITI, Mater. Sci. Eng. A 234-236 (1997) 226.

    Google Scholar 

  25. Y. TAKIGAWA, Y. IKUHARA and T. SAKUMA, Mater. Sci. For. 243-245 (1997) 425.

    Google Scholar 

  26. F. WAKEI, T. NAGANO and T. IGA, J. Am. Ceram. Soc. 80 (1997) 2461.

    Google Scholar 

  27. H. YOSHIDA, K. OKADA, Y. IKUHARA and T. SAKUMA, Phil. Mag. Lett. 76 (1997) 9.

    Google Scholar 

  28. O. FLACHER, J. J. BLANDIN and K. P. PLUCKNETT, Mater. Sci. Eng. A 221 (1996) 102.

    Google Scholar 

  29. S. J. BENNISON and M. P. HARMER, in “Ceramic Transactions, Vol. 7: Sintering of Advanced Ceramics,” edited by C. A. Handwerker, J. E. Blendell and W. Q. Kaysser (American Ceramic Society, Westerville, OH, 1990) p. 13.

    Google Scholar 

  30. S. BAIK, D. E. FOWLER, J. M. BLAKELY and R. RAJ, J. Am. Ceram. Soc. 68 (1985) 281.

    Google Scholar 

  31. S. BAIK, ibid. 69 (1986) C101.

    Google Scholar 

  32. J. D. FRANTZ andW. L. MARSHALL, Am. J. Sci. 284 (1984) 651.

    Google Scholar 

  33. V. A. POKROVSKII and H. C. HELGESON, Am. J. Sci. 295 (1995) 1255.

    Google Scholar 

  34. T. XIANG, K. P. JOHNSON, W. T. WOFFORD and E. F. GLOYNA, Ind. Eng. Chem. Res. 35 (1996) 4788.

    Google Scholar 

  35. M. K. RIDLEY, D. J. WESOLOWSKI, D. A. PALMER, P. BéNéZETH and R. M. KETTLER, Environ. Sci. Technol. 31 (1997) 1922.

    Google Scholar 

  36. A. PACKTER and H. S. DHILLON, J. Chem. Soc. (A) (1969) 2588.

  37. H. C., HELGESONJ. Phys. Chem. 71 (1967) 3121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schacht, M., Boukis, N. & Dinjus, E. Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures. Journal of Materials Science 35, 6251–6258 (2000). https://doi.org/10.1023/A:1026714218522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026714218522

Keywords

Navigation