Skip to main content
Log in

Beneficial Effects of Nitric Oxide on Cardiac Diastolic Function: 'The Flip Side of the Coin'

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Modulation by NO of systolic myocardial function received widespread attention but most studies focused on potential negative inotropic properties of NO. The very original observations on the effects of NO on myocardial contraction already provided evidence that NO modified myocardial contractile performance mainly through a relaxation-hastening effect (i.e. earlier onset of relaxation) and through an increase in myocardial distensibility. The present review discusses the relaxation hastening and distensibility-increasing effects of NO in experimental preparations, in the normal human heart, in left ventricular hypertrophy of aortic stenosis, in the human allograft and in dilated nonischemic cardiomyopathy. This 'diastolic flip side' of the myocardial effects of NO appears to be beneficial especially for patients who are dependent on the LV Frank-Starling response to maintain cardiac output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis MJ, Shah AM. Endothelial modulation of cardiac function. Harwood Academic Publishers, Amsterdam 1997.

    Google Scholar 

  2. Kelly RA, Han X. Nitrovasodilators have (small) direct effects on cardiac contractility. Is this important? Circulation 1997;96:2493–2495.

    Google Scholar 

  3. Smith JA, Shah AM, Lewis MJ. Factors released from endothelium of the ferret and pig modulate myocardial contraction. Journal of Physiology (London) 1991;439:1–14.

    Google Scholar 

  4. Meulemans AL, Sipido KR, Sys SU, Brutsaert DL. Atriopeptin III induces early relaxation of isolated mammalian papillary muscle. Circ Res 1988;62:1171–1174.

    Google Scholar 

  5. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG. 8-Bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 1994;74:970–978.

    Google Scholar 

  6. Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Circulation 1994;89:2070–2078.

    Google Scholar 

  7. Mohan P, Brutsaert DL, Paulus WJ, Sys SU. Myocardial contractile response to nitric oxide and cGMP. 1996;93:1223–1229.

    Google Scholar 

  8. Grocott-Mason R, Fort S, Lewis MJ, Shah AM. Myocardial relaxant effect of exogenous nitric oxide in the isolated ejecting heart. Am J Physiol 1994;266:H1699–H1705.

    Google Scholar 

  9. Grocott-Mason R, Anning P, Evans H, Lewis MJ, Shah AM. Modulation of left ventricular relaxation in the isolated ejecting heart by endogenous nitric oxide. Am J Physiol 1994;267:H1804–H1813.

    Google Scholar 

  10. Anning PB, Grocott-Mason R, Lewis MJ, Shah AM. Enhancement of left ventricular relaxation in the isolated rat heart by an angiotensin-converting enzyme inhibitor. Circulation 1995;92:2660–2665.

    Google Scholar 

  11. Ito N, Bartunek J, Spitzer KW, Lorell BH. Effects of the nitric oxide donor sodium nitroprusside on intercellular pH and contraction in hypertrophied myocytes. Circulation 1997;95:2303–2311.

    Google Scholar 

  12. Ito N, Kagaya Y, Weinberg EO, Barry WH, Lorell BH. Differing effects of endothelin on contraction, intracellular pH and intracellular Ca2+ in hypertrophied and normal rat myocytes. J Clin Invest 1997;99:125–135.

    Google Scholar 

  13. Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC. Stretch-induced alkalinization of feline papillary muscle: an autocrine-paracrine system. Circ Res 1998;33:775–780.

    Google Scholar 

  14. Lew WYW, Ryan J, Yasuda S. Lipopolysaccharide induces cell shrinkage in rabbit ventricular cardiac myocytes. Am J Physiol 1997;272:H2989–H2993.

    Google Scholar 

  15. Clemo HF and Baumgarten CM. cGMP and atrial natriuretic factor regulate cell volume of rabbit atrial myocytes. Circ Res 1995;77:741–749.

    Google Scholar 

  16. Prendergast BD, Sagach VF, Shah AM. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 1997;96:1320–1329.

    Google Scholar 

  17. Sagach VF, Shimanskaya TV, Sagach VV, Bogomolets AA. Coronary endothelium dysfunction and heart failure. The Journal of Heart Failure 1998;5:79(Abstr.)

    Google Scholar 

  18. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 1997;81:372–379.

    Google Scholar 

  19. Matsubara BB, Matsubara LS, Zornoff AM, Franco M, Janicki JS. Left ventricular adaptation to chronic pressure overload induced by inhibition of nitric oxide synthase in rats. Basic Res Cardiol 1998;93:173–181.

    Google Scholar 

  20. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-? in conscious dogs. J Clin Invest 1992;90:389–398.

    Google Scholar 

  21. Murray DR, Freeman GL. Tumor necrosis factor-a induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 1996;78:154–160.

    Google Scholar 

  22. Panas D, Khadour FH, Szabo C, Schulz R. Proinflammatory cytokines depress cardiac efficiency by a nitric-oxide dependent mechanism. Am J Physiol 1998;275:H1016–H1025.

    Google Scholar 

  23. Carroll JD, Lang RM, Neumann AL, Borow KM, Rajfer SI. The differential effects of positive inotropic and vasodilator therapy on diastolic properties in patients with congestive cardiomyopathy. Circulation 1986;74:815–825.

    Google Scholar 

  24. Kingma L, Smiseth OA, Belenkie I, Knudtson ML, Mc Donald RPR, Tyberg JV. A mechanism for the nitroglycerin-induced downward shift of the left ventricular diastolic pressure-diameter relationship of patients. Am J Cardiol 1986;57:673–677.

    Google Scholar 

  25. Krogmann ON, Rammos S, Jakob M, Corin WJ, Hess OM, Bourgeois M. Left ventricular diastolic function late after coarctation repair in childhood: influence of left ventricular hypertrophy. J Am Coll Cardiol 1993;21:1454–1461.

    Google Scholar 

  26. Paulus WJ, Vantrimpont PJ, Shah AM. Paracrine coronary endothelial control of left ventricular function in humans. Circulation 1995;92:2119–2126.

    Google Scholar 

  27. Matter CM, Mandinov L, Kaufmann PA, Vassalli G, Jiang Z, Hess OM. Effects of NO-donors on LV diastolic function in patients with severe pressure-overload hypertrophy. Circulation 1999;99:2396–2401.

    Google Scholar 

  28. McCarthy P. Impaired endothelium-dependent regulation of ventricular relaxation in pressure-overload cardiac hypertrophy. Circulation 2000;101:1854–1860.

    Google Scholar 

  29. Paulus WJ. Nitric oxide and cardiac contraction:clinical studies. In:`Endothelial modulation of cardiac function'edited by MJ Lewis and AM Shah, Harwood academic publishers, Amsterdam, 1997;35–51.

    Google Scholar 

  30. Paulus WJ, Bronzwaer JGF, Felice H, Kishan N, Wellens F. Deficient acceleration of left ventricular relaxation during exercise after heart transplantation. Circulation 1992;86:1175–1185.

    Google Scholar 

  31. Bartunek J, Shah AM, Vanderheyden M, Paulus WJ. Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Circulation 1997;95:90–96.

    Google Scholar 

  32. Paulus WJ, Kästner S, Pujadas P, Shah AM, Drexler H, Vanderheyden M. Left ventricular contractile effects of inducible nitric oxide synthase in the human allograft. Circulation 1997;96:3436–3442.

    Google Scholar 

  33. Fukuchi M, Hussain SNA, Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure. Their relation to lesion site and ?-adrenergic receptor therapy. Circulation 1998;98:132–139.

    Google Scholar 

  34. Stein B, Eschenhagen T, Rüdiger J, Scholz H, Förstermann U, Gath I. Increased expression of constitutive nitric oxide synthase III, but not inducible nitric oxide synthase II, in human heart failure. J Am Coll Cardiol 1998;32:1179–1186.

    Google Scholar 

  35. Haywood GA, Tsao PS, von der Leyen HE et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087–1094.

    Google Scholar 

  36. Drexler H, Kästner S, Strobel A, Studer R, Brodde OE, Hasenfuss G. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol 1998;32:955–963.

    Google Scholar 

  37. Heymes C, Vanderheyden M, Bronzwaer JGF, Shah AM, Paulus WJ. Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 1999;99:3009–3016.

    Google Scholar 

  38. Paulus WJ, Shah AM. NO and cardiac diastolic function. Cardiovascular Research 1999;43:595–606.

    Google Scholar 

  39. Zeitz CJ, Heymes C, Paulus WJ. Increased endomyocardial cNOS expression improves diastolic compliance in human dilated cardiomyopathy. Circulation 1999;100:I–78 (Abstr)

    Google Scholar 

  40. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor a and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–711.

    Google Scholar 

  41. Satoh M, Nakamura M, Tamura G et al. Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 1997;29:716–724.

    Google Scholar 

  42. Ferrari R, Bachetti T, Confortini R et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92:1479–1486.

    Google Scholar 

  43. Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA. Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells:role in regulation of inducible nitric oxide synthase. J Biol Chem 1995;270:28471–28478.

    Google Scholar 

  44. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993;73:829–838.

    Google Scholar 

  45. Hintze TH, Wang J, Omar HA, Wolin MS. Enhanced large coronary artery dilation in conscious dogs and relaxation in vitro after chronic pacing-induced increased coronary blood flow velocity. Circulation 1989;80:II–279 (Abstr.)

    Google Scholar 

  46. European Study Group on Diastolic Heart Failure. How to diagnose diastolic heart failure? European Heart Journal 1998;19:990–1003.

    Google Scholar 

  47. Hare JM, Walford GD, Hruban RH, Hutchins GM, Deckers JW, Baugham KL. Ischemic cardiomyopathy: endomyocardial biopsy and ventriculographic evaluation of patients with congestive heart failure, dilated cardiomyopathy and coronary artery disease. J Am Coll Cardiol 1992;20:1318–1325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulus, W.J. Beneficial Effects of Nitric Oxide on Cardiac Diastolic Function: 'The Flip Side of the Coin'. Heart Fail Rev 5, 337–344 (2000). https://doi.org/10.1023/A:1026511229882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026511229882

Navigation