Skip to main content
Log in

Specific Heat Near the Superfluid Transition of a 0.9869 μm 4He Film

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report measurements of the specific heat of 4He near the superfluid transition while confined between silicon wafers at 0.9869 μm separation. These data are analyzed to check on the behavior expected from correlation-length scaling. Comparison is also made with other data for planar confinement, as well as data for cylindrical confinement. These represent different lower-dimensional crossovers. We find that the present data scale very well above the bulk transition temperature, and in the region immediately below it. Near the specific heat maximum however, the data for planar confinement do not collapse on a universal curve. We compare these results with specific theoretical scaling functions. In particular we find that on the normal side, and for large enough values of the scaling variable, one can describe the data well using the concept of the surface specific heat. The locus of the data in this region agrees well with the most recent theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. E. Fisher in Critical Phenomenon, Proc. 51st “Enrico Fermi” Summer School, Varenna, Italy, M. S. Green (ed.), Academic Press, New York (1971); M. E. Fisher and M. N. Barber, Phys. Rev Lett. 28, 1516 (1972).

    Google Scholar 

  2. R. Schmolke, A. Wacker, V. Dohm, and D. Frank, Physics B 165–166, 575 (1990). See also V. Dohm, Physica Scripta T49, 46–58 (1993).

    Google Scholar 

  3. N. Schultka and E. Manousakis, Phys. Rev. Lett. 75, 2710 (1995).

    Google Scholar 

  4. K. Binder and P. C. Hohenberg, Phys. Rev. B 5, 2194 (1974).

    Google Scholar 

  5. For a review of finite-size scaling see, M. N. Barber in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz (eds.), Academic Pres, New York (1983); V. Privman in Finite Size Scaling and Numerical Simulations of Statistical Systems, V. Privman (ed.), World Scientific, New Jersey (1990).

    Google Scholar 

  6. For a review in the case of helium at the superfluid transition (up to 1991), see F. M. Gasparini and I. Rhee in Progress in Low Temperature Physics, Vol. XIII, D. F. Brewer (ed.), North-Holland, New York (1992).

  7. M. Coleman and J. Lipa, Phys. Rev. Lett. 74, 286 (1995).

    Google Scholar 

  8. J. A. Nissen, T. C. P. Chui, and J. A. Lipa, J. Low Temp. Phys. 92(5/6), 353 (1993).

    Google Scholar 

  9. J. A. Lipa, D. R. Swanson, J. A. Nissen, P. R. Williamson, Z. K. Geng, D. A. Stricker, T. C. P. Chui, U. E. Israelsson, and M. Larson, J. Low Temp. Phys. 113(5/6), 849 (1998); J. A. Lipa, D. R. Swanson, J. A. Nissen, Z. K. Geng, P. R. Williamson, D. A. Stricker, T. C. P. Chui, U. E. Israelsson, and M. Larson, Phys. Rev. Lett. 84, 4894 (2000).

    Google Scholar 

  10. S. Mehta and F. M. Gasparini, Phys. Rev. Lett. 78, 2596 (1997).

    Google Scholar 

  11. S. Mehta, M. O. Kimball, and F. M. Gasparini, J. Low Temp. Phys. 114(5/6), 467 (1999).

    Google Scholar 

  12. Preliminary results were reported in Physica B 284–288, 47 (2000).

  13. U. Mohr and V. Dohm, Physica B 284–288, 43 (2000).

    Google Scholar 

  14. F. M. Gasparini and S. Mehta, J. Low Temp. Phys. 110(1/2), 293 (1998).

    Google Scholar 

  15. P. F. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).

    Google Scholar 

  16. S. Mehta and F. M. Gasparini, J. Low Temp. Phys. 110(1/2), 287 (1998).

    Google Scholar 

  17. B. W. Magnum and G. T. Furukawa, NIST Technical Note 1265, Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90).

  18. G. Ahlers, Phys. Rev. A 3, 696 (1971).

    Google Scholar 

  19. F. M. Gasparini and M. Moldover, Phys. Rev. B 12, 93 (1975); F. M. Gasparini and A. A. Gaeta, Phys. Rev. B 17, 1466 (1978); F. M. Gasparini, Ph.D. thesis, University of Minnesota (1970).

    Google Scholar 

  20. T. P. Chen, Ph.D. thesis, State University of New York at Buffalo (1978).

  21. J. A. Lipa and T. C. P. Chui, Phys. Rev. Lett. 51, 2291 (1983).

    Google Scholar 

  22. A. N. Berker and D. R. Nelson, Phys. Rev. B 19, 2488 (1979).

    Google Scholar 

  23. T.-P. Chen and F. M. Gasparini, Phys. Rev. Lett. 40, 331, (1978); F. M. Gasparini, T.-P. Chen, and B. Bhattacharryya, Phys. Rev. B 23, 5797 (1981).

    Google Scholar 

  24. L. S. Goldner and G. Ahlers, Phys. Rev. B 45, 13129 (1992). See also L. S. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. Phys. 93(1/2), 131 (1993); and D. S. Greywall and G. Ahlers, Phys. Rev. A 7, 2145 (1973); G. Ahlers, Physica B 107, 347; D. Marek, J. A. Lipa, and D. Philips, Phys. Rev. B 38, 4465 (1988); D. R. Swanson, T. C. P. Chui, and J. A. Lipa, Phys. Rev. B 46, 9043 (1992).

    Google Scholar 

  25. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 61, 5905 (2000).

    Google Scholar 

  26. P. Sutter and V. Dohm, Physica B 194–196, 613 (1994).

    Google Scholar 

  27. R. Schloms and V. Dohm, Phys. Rev. B 42, 6142 (1990).

    Google Scholar 

  28. R. Garcia and M. H. W. Chan, Phys. Rev. Lett. 83, 1187 (1999).

    Google Scholar 

  29. N. Schultka and E. Manousakis, J. Low Temp. Phys. 111(5/6), 783 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimball, M.O., Mehta, S. & Gasparini, F.M. Specific Heat Near the Superfluid Transition of a 0.9869 μm 4He Film. Journal of Low Temperature Physics 121, 29–51 (2000). https://doi.org/10.1023/A:1026452425148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026452425148

Keywords

Navigation