Skip to main content
Log in

Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law

International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Landauer's principle states that the erasure of one bit of information requires thefree energy kT ln 2. We argue that the reliability of the bit erasure process isbounded by the accuracy inherent in the statistical state of the energy source(“the resources”) driving the process. We develop a general framework describingthe “thermodynamic worth” of the resources with respect to reliable bit erasureor good cooling. This worth turns out to be given by the distinguishability of theresource's state from its equilibrium state in the sense of a statistical inferenceproblem. Accordingly, Kullback—Leibler relative information is a decisivequantity for the “worth” of the resource's state. Due to the asymmetry of relativeinformation, the reliability of the erasure process is bounded rather by the relativeinformation of the equilibrium state with respect to the actual state than by therelative information of the actual state with respect to the equilibrium state (whichis the free energy up to constants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. Adami and N. Cerf, Prolegomena to a non-equilibrium quantum statistical mechanics, e-print quant-ph/9904006.

  2. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji (1988). Phys. Rev. Lett. 61, 826.

    Google Scholar 

  3. C. Bennett (1982). Int. J. Theor. Phys. 21(12), 905.

    Google Scholar 

  4. C. Bennett, H. Bernstein, S. Popescu, and B. Schumacher, quant-ph/9511030.

  5. C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters (1996). Phys. Rev. A 54(5), 3824.

    Google Scholar 

  6. R. Blahut (1987). Principles and Practice of Information Theory, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  7. Th. Cover and J. Thomas (1991). Elements of Information Theory, Wiley, New York.

    Google Scholar 

  8. C. Fuchs (1995). Distinguishability and accessible information in quantum theory, Ph.D. thesis, University of New Mexico; e-print quant-ph/9601020.

  9. B. Gal-Or, ed (1974). Modern Developments in Thermodynamics, Wiley, New York.

    Google Scholar 

  10. M. Horodecki (1998). Phys. Rev. A 57(5), 3364.

    Google Scholar 

  11. U. Krengel (1985). Ergodic Theory, de Gruyter, Berlin.

    Google Scholar 

  12. R. Landauer (1961). IBM Res. J. 3, 183.

    Google Scholar 

  13. R. Landauer (1991). Phys. Today 44, 23.

    Google Scholar 

  14. G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, Ground state laser cooling beyond the Lamb–Dicke limit, e-print quant-ph/9706017.

  15. G. Morigi, J. Eschner, J. I. Cirac, and P. Zoller, Laser cooling of two trapped ions: Sideband cooling beyond the Lamb–Dicke limit, e-print quant-ph/9812014.

  16. M. Ohya and D. Petz (1993). Quantum Entropy and Its Use, Springer-Verlag Berlin.

    Google Scholar 

  17. M. Plenio, The Holevo bound and Landauer's principle, e-print quant-ph/9910086.

  18. L. Schulman and U. Vazirani, Scalable NMR quantum computation, e-print quant-ph/9804060.

  19. V. Vedral, Landauer's erasure, error correction and entanglement, e-print quant-ph/9903049.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janzing, D., Wocjan, P., Zeier, R. et al. Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law. International Journal of Theoretical Physics 39, 2717–2753 (2000). https://doi.org/10.1023/A:1026422630734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026422630734

Keywords

Navigation