Skip to main content
Log in

Use of PRKO Mice to Study the Role of Progesterone in Mammary Gland Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

To better understand the distinct physiological roles played by progesterone and estrogen receptors (PR amd ER)4 as well as to study directly PR function in an in vivo context, a novel mutant mouse strain, the PR knockout (PRKO) mouse, was generated carrying a germline loss of function mutation at the PR locus. Mouse mammary gland development has been examined in PRKO mice using reciprocal transplantation experiments to investigate the effects of the stromal and epithelial PRs on ductal and lobuloalveolar development. The absence of PR in transplanted donor epithelium, but not in recipient stroma, prevented normal lobuloalveolar development in response to estrogen and progesterone treatment. Conversely, the presence of PR in the transplanted donor epithelium, but not in the recipient stroma, revealed that PR in the stroma may be necessary for ductal development. Stimulation of ductal development by the PR may, therefore, be mediated by an unknown secondary signaling molecule, possibly a growth factor. The continued stimulation of the stromal PR appears to be dependent on reciprocal signal(s) from the epithelium. Thus, the combination of gene knockout and reciprocal transplantation technologies has provided some new insights into the role of stromal-epithelial interactions and steroid hormones in mammary gland development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.

    PubMed  Google Scholar 

  2. C. H. Knight and M. Peaker (1982). Development of the mammary gland. J. Reprod. Fertil. 65:521–536.

    PubMed  Google Scholar 

  3. S. Nandi (1959). Hormonal control of mammogenesis and lactogenesis in the C3H/He Crgl mouse. In C. Stern, S. Benson, and W. Quay (eds.), University of California Berkeley Publications in Zoology, University of California Press, Berkeley, pp. 1–128.

    Google Scholar 

  4. B. Heuberger, I. Fitzka, G. Wasner, and K. Kratochwil (1982). Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc. Natl. Acad. Sci. U.S.A. 79:2957–2961.

    PubMed  Google Scholar 

  5. H. Durnberger, B. Heuberger, P. Schwartz, G. Wasner, and K. Kratochwil (1978). Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res. 38:4066–4070.

    PubMed  Google Scholar 

  6. T. Sakakura, I. Kusano, M. Kusakabe, Y. Inaguma, and Y. Nishizuka (1987). Biology of mammary fat pad in fetal mouse: capacity to support development of various fetal epithelia in vivo. Development 100:421–430.

    PubMed  Google Scholar 

  7. T. Sakakura, Y. Nishizuka, and C. J. Dawe (1979). Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J. Natl. Cancer Inst. 63:733–736.

    PubMed  Google Scholar 

  8. T. Sakakura, Y. Nishizuka, and C. J. Dawe (1976). Mesenchyme-dependent morphogenesis and epithelium-specific cyto-differentiation in mouse mammary gland. Science 194:1439–1441.

    PubMed  Google Scholar 

  9. K. B. DeOme, L. J. Faulkin, H. A. Bern, and P. B. Blair (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary pads of female C3H mice. Cancer Res. 19:515–519.

    Google Scholar 

  10. K. Kratochwil (1977). Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland. Devel. Biol. 61:358–365.

    Google Scholar 

  11. K. Kratochwil and P. Schwartz (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc. Natl. Acad. Sci. U.S.A. 73:4041–4044.

    PubMed  Google Scholar 

  12. T. Sakakura (1987). Mammary embryogenesis. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland, Plenum Press, New York, pp. 37–66.

    Google Scholar 

  13. S. Z. Haslam and L. J. Counterman (1991). Mammary stroma modulates hormonal responsiveness of mammary epithelium in vivo in the mouse. Endocrinology 129:2017–2023.

    PubMed  Google Scholar 

  14. G. R. Cunha (1994). Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74:1030–1044.

    PubMed  Google Scholar 

  15. G. R. Cunha, P. Young, S. Hamamoto, R. Guzman, and S. Nandi (1992). Developmental response of adult mammary epithelial cells to various fetal and neonatal mesenchymes. Epithelial Cell Biol. 1:105–118.

    PubMed  Google Scholar 

  16. S. J. Haslam (1988). Progesterone effects on deoxyribonucleic acid synthesis in normal mouse mammary glands. Endocrinology 122:464–470.

    PubMed  Google Scholar 

  17. S. Z. Haslam (1988). Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland. Ontogeny of mammary progesterone receptors. J. Steroid Biochem. 31:9–13.

    PubMed  Google Scholar 

  18. S. Z. Haslam and G. Shyamala (1981). Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108:825–830.

    PubMed  Google Scholar 

  19. S. Wang, L. J. Counterman, and S. Z. Haslam (1990). Progesterone action in normal mouse mammary gland. Endocrinology 127:2183–2189.

    PubMed  Google Scholar 

  20. J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery Jr., G. Shyamala, O. M. Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Devel. 9:2266–2278.

    PubMed  Google Scholar 

  21. C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland, Plenum Press, New York, pp. 3–36.

    Google Scholar 

  22. B. K. Vonderhaar (1984). Hormone and growth factors in mammary gland development. In C. M. Veneziale (eds.), Control of Cell Growth and Proliferation, Van Nostrand-Reinhold, Princeton, pp. 11–33.

    Google Scholar 

  23. K. Plaut, M. Ikeda, and B. K. Vonderhaar (1993). Role of growth hormone and insulin-like growth factor-I in mammary development. Endocrinology 133:1843–1848.

    PubMed  Google Scholar 

  24. W. Imagawa, J. Yang, R. Guzman, and S. Nandi (1994). Control of Mammary Gland Development. In E. Knobrl and J. D. Neill (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1033–1063.

    Google Scholar 

  25. W. T. Schrader and B. W. O'Malley (1972). Progesterone-binding components of chick oviduct. IV. Characterization of purified subunits. J. Biol. Chem. 247:51–59.

    PubMed  Google Scholar 

  26. L. Tung, M. K. Mohamed, J. P. Hoeffler, G. S. Takimoto, and K. B. Horwitz (1993). Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol. Endocrinol. 7:1256–1265.

    PubMed  Google Scholar 

  27. M. Beato, P. Herrlich, and G. Schutz (1995). Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.

    PubMed  Google Scholar 

  28. M. J. Tsai and B. W. O'Malley (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63:451–486.

    PubMed  Google Scholar 

  29. S. Z. Haslam (1989). The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 125:2766–2772.

    PubMed  Google Scholar 

  30. P. Kastner, A. Krust, B. Turcotte, U. Strupp, L. Tora, H. Gronemyer, and P. Chambon (1990). Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9:1603–1614.

    PubMed  Google Scholar 

  31. A. Guiochon-Mantel, H. Loosfelt, P. Lescop, S. Christin-Maitre, M. Perrot-Applanat, and E. Milgrom (1992). Mechanisms of nuclear localization of the progesterone receptor. J. Steroid Biochem. 41:209–215.

    Google Scholar 

  32. G. Shyamala and A. Ferenczy (1984). Mammary fat pad may be a potential site for initiation of estrogen action in normal mouse mammary glands. Endocrinology 115:1078–1081.

    PubMed  Google Scholar 

  33. G. B. Silberstein, K. Van Horn, G. Shyamala, and C. W. Daniel (1996). Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Diff. 7:945–952.

    PubMed  Google Scholar 

  34. S. L. Mansour, K. R. Thomas, and M. R. Capecchi (1988). Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352.

    PubMed  Google Scholar 

  35. Q. Hou and J. Gorski (1993). Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development. Proc. Natl. Acad. Sci. U.S.A. 90:9460–9464.

    PubMed  Google Scholar 

  36. D. B. Lubahn, J. S. Moyer, T. S. Golding, J. F. Couse, K. S. Korach, and O. Smithies (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. U.S.A. 90:162–166.

    Google Scholar 

  37. W. P. Boccinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2:323–334.

    Google Scholar 

  38. E. Baldi, C. Krauz, M. Luconi, L. Bonaccorsi, M. Maggi, and G. Forti (1995). Actions of progesterone on human sperm: a model of non-genomic effects of steroids. J. Steroid Biochem. Mol. Biol. 53:199–203.

    PubMed  Google Scholar 

  39. S. K. Mani, J. M. Allen, J. P. Lydon, B. Mulac-Jericevic, J. D. Blaustein, F. J. DeMayo, O. Conneely, and B. W. O'Malley (1996). Dopamine requires the unoccupied progesterone receptor to induce sexual behavior in mice. Mol. Endocrinol. 10:1728–1737.

    PubMed  Google Scholar 

  40. C. L. Clarke and R. L. Sutherland (1990). Progestin regulation of cellular proliferation. Endocrine Rev. 11:266–300.

    Google Scholar 

  41. F. Bresciani (1968). Topography of DNA synthesis in the mammary gland of the C3H mouse and its control by ovarian hormones: an autoradiographic study. Cell Tissue Kinet. 1:51–63.

    Google Scholar 

  42. G. Shyamala (1987). Endocrine and other influences in the normal development of the breast. In A. H. G. Paterson and A. W. Lees (eds.), Fundamental Problems in Breast Cancer, Martinus Nijhof, Boston, pp. 127–137.

    Google Scholar 

  43. W. Imagawa, Y. Tomooka, S. Hamamoto, and S. Nandi (1985). Stimulation of mammary epithelial cell growth in vitro and interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116:1514–1524.

    PubMed  Google Scholar 

  44. K. B. Horwitz (1992). The molecular biology of RU486. Is there a role for antiprogestins in the treatment of breast cancer? Endocrine Rev. 13:146–163.

    Google Scholar 

  45. C. W. Welsch (1985). Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res. 45:3415–3443.

    PubMed  Google Scholar 

  46. S. P. Robinson and V. C. Jordan (1987). Reversal of the antitumor effects of tamoxifen by progesterone in the 7, 12-dimethyl-benzanthracene-induced rat mammary carcinoma model. Cancer Res. 47:5386–5390.

    PubMed  Google Scholar 

  47. N. Nagasawa, M. Aoki, N. Sakagami, and M. Ishida (1988). Medroxyprogesterone acetate enhances spontaneous mammary tumorigenesis and uterine adenomyosis in mice. Breast Cancer Res. Treatment 12:59–66.

    Google Scholar 

  48. E. A. Musgrave, J. A. Hamilton, C. S. Lee, K. J. E. Sweeney, C. K. W. Watts, and R. L. Sutherland (1993). Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol. Cell. Biol. 13:3577–3587.

    PubMed  Google Scholar 

  49. E. A. Musgrave, C. S. L. Lee, A. L. Cornish, A. Swarbrick, and R. L. Sutherland (1997). Antiprogestin inhibition of cell cycle progression in T-47D breast cancer cells is accompanied by induction of cyclin-dependent kinase inhibitor p21. Mol. Endocrinol. 11:54–66.

    PubMed  Google Scholar 

  50. P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    PubMed  Google Scholar 

  51. V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Devel. 9:2364–2372.

    PubMed  Google Scholar 

  52. P. Sicinski and R. A. Weinberg (1997). A specific role for cyclin D1 in mammary gland development. J. Mam. Gland Biol. Neoplasia 2:335–342.

    Google Scholar 

  53. L. Stepanova, X. Leng, S. B. Parker, and J. W. Harper (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp 90 that binds and stabilized Cdk4. Genes Devel. 10:1491–1502.

    PubMed  Google Scholar 

  54. K. Kratochwil (1986). Tissue combination and organ culture studies in the development of the embryonic mammary gland. Devel. Biol. 4:315–333.

    Google Scholar 

  55. C. W. Daniel, L. J. Young, D. Medina, and K. B. DeOme (1971). The influence of mammogenic hormones on serially transplanted mouse mammary gland. Exp. Gerontol. 6:95–101.

    PubMed  Google Scholar 

  56. K. K. Sekhri, D. R. Pitelka, and K. B. DeOme (1967). Studies of mouse mammary glands. II. Cytomorphology of mammary transplants in inguinal fat pads, nipple-excised host glands, and whole mammary-gland transplants. J. Natl. Cancer Inst. 39:491–527.

    PubMed  Google Scholar 

  57. G. R. Cuhna and Y. K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1:21–36.

    Google Scholar 

  58. G. R. Cunha, P. Young, Y.-K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Mechanism of estrogen action in mesenchymal-epithelial interaction in the mammary gland. J. Mam. Gland Biol. Neoplasia 2:393–402.

    Google Scholar 

  59. R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocrinol. 11:801–811.

    PubMed  Google Scholar 

  60. S. Coleman, G. B. Silberstein, and C. W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Devel. Biol. 127:304–315.

    Google Scholar 

  61. Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131:215–226.

    PubMed  Google Scholar 

  62. B. Niranjan, L. Buluwela, J. Yant, N. Perusinghe, A. Atherton, D. Phippard, T. Dale, B. Gusterson, and T. Kamalati (1995). HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121:2897–2908.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, R.C., Lydon, J.P., O'Malley, B.W. et al. Use of PRKO Mice to Study the Role of Progesterone in Mammary Gland Development. J Mammary Gland Biol Neoplasia 2, 343–354 (1997). https://doi.org/10.1023/A:1026343212187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026343212187

Navigation