Skip to main content
Log in

Substrate Size and Primate Forelimb Mechanics: Implications for Understanding the Evolution of Primate Locomotion

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Did the anatomical and locomotor specializations of primates evolve in response to requirements of locomotion and foraging on thin branches? Laboratory studies of primates and other mammals provide data suggesting that as substrate size decreases primates will protract their arms to a greater degree, lower the center of gravity by increasing elbow flexion, and decrease forelimb substrate reaction forces. I tested these hypotheses by calculating maximum arm protraction, shoulder height, elbow flexion, and substrate reaction forces during stance phase in 5 species of Old World monkeys walking on a flat runway and raised poles of varying diameters. As substrate size decreased most subjects increased elbow flexion and lowered their shoulder height. Three of the 5 species lowered peak substrate reaction forces as substrate size decreased but, only 2 of the species increased arm protraction as substrate size decreased. These results reject the hypothesis that arm protraction is a function of branch size, but provide stronger support for the notion that branch size influences elbow flexion, shoulder height, and peak substrate reaction forces in some primates. The fact that biomechanical expectations are met in some (but not all) cases and some (but not all) species suggests that the topic is quite complex and requires further study. Nonetheless, preliminary data suggest that biomechanical accommodations to substrate size may have played a role in the early differentiation of primates from other mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biewener, A. A. (1983). Allometry of quadrupedal locomotion: The scaling of duty factor, bone curvature and limb orientation to body size. J. Exp. Biol. 105: 147-171.

    Google Scholar 

  • Cartmill, M. (1970). The Orbits of Arboreal Mammals: A Reassessment of the Arboreal Theory of Primate Evolution, PhD Dissertation, University of Chicago, Chicago.

    Google Scholar 

  • Cartmill, M. (1972) Arboreal adaptations and the origin of the order primates. In Tuttle, R. (ed.), The Functional and Evolutionary Biology of Primates, Aldine, Chicago, pp. 97-122.

    Google Scholar 

  • Cartmill, M. (1974a). Rethinking primate origins. Science 184: 436-443.

    Google Scholar 

  • Cartmill, M. (1974b). Pads and claws in arboreal locomotion. In Jenkins, F. (ed.), Primate Locomotion, Academic Press, New York, pp. 45-83.

    Google Scholar 

  • Cartmill, M. (1985). Climbing. In Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D. B. (Eds.), Functional Vertebrate Morphology, The Belknap Press of Harvard University Press, Cambridge, pp. 73-88.

    Google Scholar 

  • Cartmill, M. (1992). New views on primate origins. Evol. Anthropol. 2: 105-111.

    Google Scholar 

  • Cartmill, C., Lemelin, P., and Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zool. J. Linn. Soc. 136: 401-420.

    Google Scholar 

  • Charles-Dominique, P., and Martin, R. D. (1970). Evolution of lorises and lemurs. Nature 227: 257-260.

    Google Scholar 

  • Demes, B., Larson, S. G., Stern, J. T. J., Jungers, W. L., Biknevicius, A. R., and Schmitt, D. (1994). The kinetics of primate quadrupedalism: “Hindlimb drive” reconsidered. J. Hum. Evol. 26: 353-374.

    Google Scholar 

  • Dunbar, D. (1989). Locomotor behavior of Rhesus Macaques (Macaca mulatta) on Cayo Santiago. Puerto Rican Health Sci. J. 8: 79-85.

    Google Scholar 

  • Dunbar, D. C., and Badam, G. L. (1999). Development of posture and locomotion in free-ranging primates. Neurosci. and Bio Genal. Review 22: 541-546.

    Google Scholar 

  • Dunbar, D. C., and Badam, G. L. (2000). Locomotion and posture during terminal branch feeding. Int. J. Primatol. 21: 649-669.

    Google Scholar 

  • Fedigan, L., and Fedigan, L. M. (1988). Cercopithecus aethiops: A review of field studies. In Gautier-Hion, A., and Gautier, F. B. J. (Eds.), A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge.

    Google Scholar 

  • Fleagle, J. G. (1999). Primate Adaptation and Evolution, Academic Press, New York.

    Google Scholar 

  • Grand, T. I. (1968a). The functional anatomy of the lower limb of the howler monkey (Alouatta caraya). Am. J. Phys. Anthropol. 28: 163-181.

    Google Scholar 

  • Grand, T. I. (1968b). Functional anatomy of the upper limb. Bibl. Primatol. 7: 104-125.

    Google Scholar 

  • Hamrick, M. W. (1998). Functional and adaptive significance of pads and claws: Evidence from New World anthropoids. Am. J. Phys. Anthropol. 106: 113-127.

    Google Scholar 

  • Hamrick, M. W. (2001). Primate origins: Evolutionary change in digital ray patterning and segmentation. J. Hum. Evol. 40: 339-351.

    Google Scholar 

  • Jenkins, F. A. J. (1974). Tree shrew locomotion and the origin of primate arborealism. In Jenkins, J. F. A. (ed.), Primate Locomotion, Academic Press, New York, pp. 85-116.

    Google Scholar 

  • Jones, F. W. (1916). The Arboreal Man. Hafner, New York.

    Google Scholar 

  • Kimura, T. (1985). Bipedal and quadrupedal walking of primates: Comparative dynamics. In Kondo, S., Ishida, H., Kimura, T., Okada, M., Yamazaki, M., and Prost, J. (Eds.), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, University of Tokyo Press, Tokyo, pp. 47-58.

    Google Scholar 

  • Kimura, T. (1992). Hindlimb dominance during primate high-speed locomotion. Primates 33: 465-474.

    Google Scholar 

  • Kimura, T., Okada, M., and Ishida, H. (1979). Kinesiological characteristics of primate walking: Its significance in human walking. In Morbeck, M., Preuschoft, H., and Gomberg, N. (Eds.), Environment, Behavior, Morphology: Dynamic Interactions in Primates, Gustav Fischer, New York.

    Google Scholar 

  • Krakauer, E., Lemelin, P., and Schmitt, D. (2002). Hand and body position during locomotor behavior in the aye-aye (Daubentonia madagascarensis). Am. J. Primatol. 57: 105-108.

    Google Scholar 

  • Larson, S. G. (1998). Unique aspects of quadrupedal locomotion in nonhuman primates. In Strasser, E., Fleagle, J., McHenry, H., and Rosenberger, A. (Eds.), Primate Locomotion: Recent Advances, Plenum, New York. pp. 157-173.

    Google Scholar 

  • Larson, S. G., Schmitt, D., Lemelin, P., and Hamrick, M. W. (1999). The uniqueness of primate forelimb posture during quadrupedal locomotion. Am. J. Phys. Anthropol. 112: 87-101.

    Google Scholar 

  • Larson, S. G., Schmitt, D., Lemelin, P., and Hamrick, M. W. (2001). Limb excursion during quadrupedal walking: How do primates compare to other mammals. J. Zool. 255: 353-365.

    Google Scholar 

  • Lemelin, P. (1996) The Evolution of Manual Prehensility in Primates: A Comparative Study of Prosimians and Didelphid Marsupials, PhD Dissertation, State University of New York at Stony Brook.

  • Lemelin, P. (1999). Morphological correlates of substrate use in didelphid marsupials: Implications for primate origins. J. Zool., Lond. 247: 165-175.

    Google Scholar 

  • Meldrum, D. J. (1991). Kinematics of the Cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations. Am. J. Phys. Anthropol. 84: 273-290.

    Google Scholar 

  • Morbeck, M. E. (1979). Forelimb use and positional adaptation in Colobus guereza: Integration of behavioral, ecological, and anatomical data. In Morbeck, M., Preuschoft, H., and Gomberg, N. (Eds.), Environment, Behavior, and Morphology: Dynamic Interactions in Primates, Gustav Fisher, New York, pp. 95-118.

    Google Scholar 

  • Napier, J. R., and Napier, P. H. (1967). A Handbook of Living Primates, Academic Press, New York.

    Google Scholar 

  • Polk, J. D. (2001). The Influence of Body Size and Body Proportions on Primate Quadrupedal Locomotion, PhD Dissertation, State University of New York at Stony Brook.

  • Prost, J. H., and Sussman, R. W. (1969). Monkey locomotion on inclined surfaces. Am. J. Phys. Anthropol. 31: 53-58.

    Google Scholar 

  • Rasmussen, D. T. (1990). Primate origins: Lessons from a neotropical marsupial. Am. J. Primatol. 22: 263-277.

    Google Scholar 

  • Reynolds, T. R. (1985). Stresses on the limbs of quadrupedal primates. Am. J. Phys. Anthropol. 67: 351-362.

    Google Scholar 

  • Rodman, P. S. (1979). Skeletal differentiation of Macaca fascicularis and Macaca fascicularis in relation to arboreal and terrestrial quadrupedalism. Am. J. Phys. Anthropol. 51: 51-62.

    Google Scholar 

  • Rollinson, J., and Martin, R. D. (1981). Comparative aspects of primate locomotion with special reference to arboreal cercopithecines. Symp. Zool. Soc. Lond. 48: 377-427.

    Google Scholar 

  • Rose, M. D. (1973). Quadrupedalism in primates. Primates 14: 337-358.

    Google Scholar 

  • Rose, M. D. (1989). New postcranial specimens of catarrhines from the middle Miocene Chinji formation, Pakistan: Descriptions and a discussion of the proximal humeral functional morphology in anthropoids. J. Hum. Evol. 18: 131-162.

    Google Scholar 

  • Schmitt, D. (1994). Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J. Hum. Evol. 26: 441-458.

    Google Scholar 

  • Schmitt, D. (1995) A Kinematic and Kinetic Analysis of Forelimb use During Arboreal and Terrestrial Quadrupedalism in Old World Monkeys, PhD Dissertation, State University of New York at Stony Brook.

  • Schmitt, D. (1998). Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World Monkeys. In Strasser, E., Rosenberger, A., McHenry, H., and Fleagle, J. (eds), Primate Locomotion: Recent Advances, Plenum, New York, pp. 175-200.

    Google Scholar 

  • Schmitt, D. (1999). Compliant walking in primates. J. Zool. 247: 149-160.

    Google Scholar 

  • Schmitt, D. (2003a). Evolutionary implications of the unusual walking mechanics of the common marmoset (Callithrix jacchus). Am. J. Phys. Anthropol. 122: 28-37.

    Google Scholar 

  • Schmitt, D. (2003b). The relationship between forelimb anatomy and mediolateral forces in primate quadrupeds: Implications for interpretation of locomotor behavior in extinct primates. J. Hum. Evol. 44: 47-58.

    Google Scholar 

  • Schmitt, D., Larson, S. G., and Stern, J. T., Jr., (1994). Serratus ventralis function in vervet monkeys: Are primate quadrupeds unique? J. Zool. 232: 215-230.

    Google Scholar 

  • Schmitt, D., and Lemelin, P. (2002). The origins of primate locomotion: Gait mechanics of the woolly opossum. Am. J. Phys. Anthropol. 118: 231-238.

    Google Scholar 

  • Sokal, R., and Rohlf, J. (1981). Biometry. The Principles and Practice of Statistics in Biological Research, Freeman, New York.

    Google Scholar 

  • Stevens, N. J. (2000). Effects of substrate size and orientation on quadrupedal walking in Cheirogaleus. Am. J. Phys. Anthropol. 30: 290-291.

    Google Scholar 

  • Stevens, N. J. (2001). Effects of substrate orientation on quadrupedal walking in Loris tardigradus. J. Morph. 248: 288.

    Google Scholar 

  • Stevens, N. J., Demes, A. B., and Larson, S. G. (2001). Effects of branch compliance on quadrupedal walking in Loris tardigradus. Am. J. Phys. Anthropol. 113(Suppl. 32): 142.

    Google Scholar 

  • Stevens, N. J., and Larson, S. G. (1999). The effects of substrate orientation on shoulder and hip angular excursions in Aotus. Am. J. Phys. Anthropol. 108(Suppl. 28): 257.

    Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. Am. J. Primatol. 23: 209-223.

    Google Scholar 

  • Vilensky, J. A., and Larson, S. G. (1989). Primate locomotion: Utilization and control of symmetrical gaits. Annu. Rev. Anthropol. 18: 17-35.

    Google Scholar 

  • Vilensky, J. A., Moore, A. M., and Libii, J. N. (1994). Squirrel monkey locomotion on an inclined treadmill: Implications for the evolution of gaits. J. Hum. Evol. 26: 375-386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, D. Substrate Size and Primate Forelimb Mechanics: Implications for Understanding the Evolution of Primate Locomotion. International Journal of Primatology 24, 1023–1036 (2003). https://doi.org/10.1023/A:1026224211797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026224211797

Navigation