Skip to main content
Log in

Serially Passaged Human Nasal Epithelial Cell Monolayer for in Vitro Drug Transport Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the feasibility of using a serially passaged culture of human nasal epithelial cell monolayers on a permeable support for in vitro drug transport studies. The optimum conditions for passaged culture as well as the correlation between the transepithelial electrical resistance (TEER) value and drug permeability (Papp) were evaluated.

Methods. Fresh human nasal epithelial cells were collected from normal inferior turbinates and were subcultured repeatedly in serum-free bronchial epithelial cell growth media (BEGM) in petri dishes. The subcultured cells of each passage were seeded onto permeable supports at 5 × 105 cells/cm2 and grown in Dulbecco's modified Eagle medium (DMEM). Morphologic characteristics were observed by scanning electron microscopy (SEM). To verify the formation of tight junctions, actin staining and transmission electron microscopy (TEM) studies were conducted. In the drug transport study, [14C]mannitol and budesonide were selected as the paracellular and the transcellular route markers, respectively.

Results. Serially passaged cells were successfully cultured on a permeable support and showed significantly high TEER values up to passage 4. After 14 days of seeding, SEM showed microvilli, and protrusions of cilia and mucin granules were detected by TEM. The paracellular marker [14C]mannitol showed a nearly constant permeability coefficient (Papp) when the TEER value exceeded 500 Ω·cm2 regardless of the passage number. However, as expected, budesonide showed a higher permeability coefficient compared to [14C]mannitol and was less affected by the TEER value.

Conclusions. Human nasal epithelial cell monolayers were successfully subcultured on a permeable support up to passage 4. These cell culture methods may be useful in high-throughput screening of in vitro nasal transport studies of various drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Marttin, J. C. Verhoef, C. Cullander, S. G. Romeijn, and J. F. Nagelkerke. F. W. Merkus, Confocal laser scanning microscopic visualization of the transport of dextrans after nasal administration to rats: effects of absorption enhancers. Pharm. Res. 14:631-637 (1997).

    Google Scholar 

  2. S. J. Hersey and R. T. Jackson. Effect of bile salts on nasal permeability in vitro. J. Pharm. Sci. 76:876-879 (1987).

    Google Scholar 

  3. P. M. Reardon, C. H. Gochoco, K. L. Audus, G, Wilson, and P. L. Smith. In vitro nasal transport across ovine mucosa: Effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptidem, mannitol, and lucifer yellow. Pharm. Res. 10:553-561 (1993).

    Google Scholar 

  4. Y. Maitani, K. Ishigaki, K. Takayama, and T. Nagai. In vitro nasal transport across rabbit mucosa: effect of oxygen bubbling, pH and hypertonic pressure on permeability of lucifer yellow, diazepam and 17 β-estradiol. Int. J. Pharm. 146:11-19 (1997).

    Google Scholar 

  5. M. C. Schmidt, D. Simmen, M. Hilbe, P. Boderke, G. Ditzinger, J. Sandow, S. Lang, W. Rubas, and H. P. Merkle. Validation of excised bovine nasal mucosa as in vitro model to study drug transport and metabolic pathways in nasal epithelium. J. Pharm. Sci. 89:396-407 (2000).

    Google Scholar 

  6. C. Wadell, E. Bjork, and O. Camber. Nasal drug delivery–evaluation of an in vitro model using porcine nasal mucosa. Eur. J. Pharm. Sci. 7:197-206 (1999).

    Google Scholar 

  7. U. Werner and T. Kissel. Development of a human nasal cell culture model and its suitability for transport and metabolism studies under in vivo conditions. Pharm. Res. 12:565-571 (1995).

    Google Scholar 

  8. U. Werner and T. Kissel. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm. Res. 13:978-988 (1996).

    Google Scholar 

  9. D. Schmidt, U. Hubsch, H. Wurzer, W. Heppt, and M. Aufderheide. Development of an in vitro human nasal epithelial (HNE) cell model. Toxicol. Lett. 88:75-79 (1996).

    Google Scholar 

  10. M. C. Schmidt, H. Peter, S. R. Lang, G. Ditzinger, and H. P. Merkle. In vitro cell models to study nasal mucosal permeability and metabolism. Adv. Drug Deliv. Rev. 29:51-79 (1998).

    Google Scholar 

  11. T. Kissel and U. Werner. Nasal delivery of peptides: an in vitro cell culture model for the investigation of transport and metabolism in human nasal epithelium. J. Control. Release 53:195-203 (1998).

    Google Scholar 

  12. U. A. Remigius, J. Mark, W. Tom, A. Patrick, K. Renaat, and V. Norbert. In-vitro nasal drug delivery studies: comparison of derivatised, fibrillar and polymerized collagen matrix-based human nasal primary culture systems for nasal drug delivery studies. J. Pharm. Pharmacol. 53:1447-1456 (2001).

    Google Scholar 

  13. R. U. Agu, H. V. Dang, M. Jorissen, T. Willems, R. Kinget, and N. Verbeke. Nasal absorption enhancement strategies for therapeutic peptides: an in vitro study using cultured human nasal epithelium. Int. J. Pharm. 237:179-191 (2002).

    Google Scholar 

  14. H. V. Dang, R. U. Agu, M. Jorissen, T. Willems, R. Kinget, and N. Verbeke. Characterization of human nasal primary culture systems to investigate peptide metabolism. Int. J. Pharm. 238:247-256 (2002).

    Google Scholar 

  15. T. E. Gray, K. Guzman, C. W. Davis, L. H. Abdullah, and P. Nettesheim. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14:104-112 (1996).

    Google Scholar 

  16. R. Wu, J. Yankaskas, E. Cheng, M. R. Knowles, J. T. Gatzy, and R. C. Boucher. Growth and differentiation of human nasal epithelial cells in culture. Am. Rev. Respir. Dis. 132:311-320 (1985).

    Google Scholar 

  17. D. P. Chopra, J. Sullivan, J. J. Wille, and K. M. Siddiqui. Propagation of differentiating normal human tracheobronchial epithelial cells in serum-free medium. J. Cell. Physiol. 130:173-181 (1987).

    Google Scholar 

  18. H. J. Roh, E. K. Goh, S. G. Wang, K. M. Chon, J. H. Yoon, and Y. S. Kim. Serially passaged normal human nasal epithelial cells: morphology and mucous secretory differentiation. Korean. J. Rhinol. 6:107-112 (1999).

    Google Scholar 

  19. D. J. Thornton, T. Gray, P. Nettesheim, M. Howard, J. S. Koo, and J. K. Sheehan. Characterization of mucins from cultured normal human tracheobronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 278:L1118-L1128 (2000).

    Google Scholar 

  20. E. K. Anderberg, T. Lindmark, P. Artursson, and S. Caprate. Dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res. 10:857-864 (1993).

    Google Scholar 

  21. L. A. Lapierre. The molecular structure of the tight junction. Adv. Drug Deliv. Rev. 41:255-264 (2000).

    Google Scholar 

  22. J. L. Madara, J. Stafford, D. Barenberg, and S. Carson. Functional coupling of tight junctions and microfilaments in T84 monolayers. Am. J. Physiol. 254:G416-G423 (1988).

    Google Scholar 

  23. C. Mattinger, T. Nyugen, D. Schafer, and K. Hormann. Evaluation of serum-free culture conditions for primary human nasal epithelial cells. Int. J. Hyg. Environ. Health 205:235-238 (2002).

    Google Scholar 

  24. C. S. Rhee, Y. G. Min, C. H. Lee, T. Y. Kwon, C. H. Lee, W. J. Yi, and K. S. Park. Ciliary beat frequency in cultured human nasal epithelial cells. Ann. Otol. Rhinol. Laryngol. 110:1011-1016 (2001).

    Google Scholar 

  25. N. R. Mathias and K. J. Kim. T. W. Robison., V. H. L. Lee. Development and characterization of rabbit tracheal epithelial cell monolayer models for drug transport studies. Pharm. Res. 12:1499-1505 (1995).

    Google Scholar 

  26. A. N. O. Dodoo, S. S. Balnsal, D. J. Barlow, F. Bennet, R. C. Hider, A. B. Lansley, M. J. Lawrence, and C. Marriott. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport. J. Pharm. Sci. 89:223-231 (2000).

    Google Scholar 

  27. K. A. Foster, M. L. Avery, M. Yazdanian, and K. L. Audus. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int. J. Pharm. 208:1-11 (2000).

    Google Scholar 

  28. J. C. Kidney and D. Proud. Neutrophil transmigration across human airway epithelial monolayers: mechanisms and dependence on electrical resistance. Am. J. Respir. Cell Mol. Biol. 23:389-395 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, JW., Kim, YS., Lee, SH. et al. Serially Passaged Human Nasal Epithelial Cell Monolayer for in Vitro Drug Transport Studies. Pharm Res 20, 1690–1696 (2003). https://doi.org/10.1023/A:1026112107100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026112107100

Navigation