Skip to main content
Log in

The Influence of Modulational Instability on Energy Exchange in Coupled Sine-Gordon Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a two-component system of coupled sine-Gordon equations, particular solutions of which represent a continuum generalization of periodic energy exchange in a system of coupled pendulums. Weakly nonlinear solutions describing periodic energy exchange between waves traveling in the two components are governed, depending on the length scale of the amplitude variation, either by two nonlocally coupled nonlinear Schrödinger equations, with different transport terms due to the group velocity, or by a model that is nondispersive to the leading order. Using both asymptotic analysis and numerical simulations, we show that the effects of dispersion significantly influence the structure of these solutions, causing modulational instability and the formation of localized structures but preserving the pattern of energy exchange between the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Sh. Akhatov, V. A. Baikov, and K. R. Khusnutdinova, J. Appl. Math. Mech., 59, 353–361 (1995).

    Google Scholar 

  2. S. Yomosa, Phys. Rev. A, 27, 2120–2125 (1983).

    Google Scholar 

  3. L. V. Yakushevich, Nonlinear Physics of DNA, Wiley, Chichester (1998).

    Google Scholar 

  4. A. V. Zhiber, N. H. Ibragimov, and A. B. Shabat, Dokl. Akad. Nauk SSSR, 249, 26–29 (1979).

    Google Scholar 

  5. S. Lie, Arch. Math. Naturv., 6, 112–124 (1881).

    Google Scholar 

  6. N. H. Ibragimov, ed., CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton (1994).

    Google Scholar 

  7. A. V. Zhiber and A. B. Shabat, Sov. Phys. Dokl., 24, 607–609 (1979).

    Google Scholar 

  8. T. A. Kontorova and Ya. I. Frenkel, Zh. Eksp. Teor. Fiz., 8, 89–95, 1340–1368 (1938).

    Google Scholar 

  9. O. M. Braun and Yu. S. Kivshar, Phys. Rep., 306, 1–108 (1998).

    Google Scholar 

  10. K. R. Khusnutdinova and V. V. Silberschmidt, Proc. Estonian Acad. Sci. Phys. Math., 52, 63–75 (2003).

    Google Scholar 

  11. L. I. Mandelshtam, Lectures on the Theory of Oscillations [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  12. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974); English transl., Springer, New York (1989).

    Google Scholar 

  13. K. R. Khusnutdinova and D. E. Pelinovsky, Wave Motion, 38, 1–10 (2003).

    Google Scholar 

  14. E. Knobloch and J. De Luca, Nonlinearity, 3, 975–980 (1990).

    Google Scholar 

  15. C. Martel, E. Knobloch, and J. M. Vega, Phys. D, 137, 94–123 (2000); C. Martel, J. M. Vega, and E. Knobloch, Phys. D, 174, 198–217 (2003).

    Google Scholar 

  16. C. Godrèche and P. Manneville, eds., Hydrodynamics and Nonlinear Instabilities, Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, S.D., Grimshaw, R.H.J. & Khusnutdinova, K.R. The Influence of Modulational Instability on Energy Exchange in Coupled Sine-Gordon Equations. Theoretical and Mathematical Physics 137, 1448–1458 (2003). https://doi.org/10.1023/A:1026008907682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026008907682

Navigation