Skip to main content
Log in

Heterochromatin and Complexity: A Theoretical Approach

  • Published:
Nonlinear Dynamics, Psychology, and Life Sciences

Abstract

Heterochromatin represents 30% of eukaryotic genome in Drosophila and 15% in humans. Despite extensive research spanning many decades, its evolutionary significance, as well as the forces that guarantee its maintenance, are still elusive. Many theoretical and experimental approaches have led researchers to propose several conceptual frameworks to elucidate the nature of this huge mysterious genetic material and its spreading in all eukaryotic genomes. “Junk DNA” as well as “selfish genetic material” are two examples of such attempts, but several lines of evidence suggest that such explanations are incomplete. In fact, if the selfish DNA hypothesis does not explain the mapping of genetic functions in heterochromatin, then the junk DNA hypothesis is incomplete in describing both emergence of genetic functions and their maintenance in the eukaryotic heterochromatin. Recent developments in the physics of complex systems and mathematical concepts such as fractals provide new conceptual clues to answer several basic questions concerning the emergence of heterochromatin in eukaryotic genomes, its evolutionary significance, the forces that guarantee its maintenance, and its peculiar behavior in the eukaryotic cell. The aim of this paper is to provide a new theoretical framework for the heterochromatin, considering such genetic material in physical terms as a complex adaptive system. We apply some computer calculations to demonstrate the nonlinearity of the flux of genetic information along the phylogenic tree. Fractal dimensions of representative heterochromatic sequences are provided. A theory is proposed in which heterochromatin is considered a system that evolves in a self-organized manner at the edge of cellular and environmental chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev, E.V., Phillips, R.L. & Rines, H.W. (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric region. Proceedings of the National Academy of Sciences U.S.A. 95, 13073–13078

    Google Scholar 

  • Bak, P. (1996). How nature works. New York: Springer-Verlag.

    Google Scholar 

  • Bak, P. & Chen, K. (1991). Self-organized criticality. Scientific American 264, January, 46.

    Google Scholar 

  • Barry, A.E., Howman, E.V., Cancilla, M.R., Saffery, R. & Choo, K.H. (1999). Sequence analysis of an 80 kb human neocentromere Human Molecular Genetics, 8, 217–227.

    Google Scholar 

  • Bonaccorsi, S., Gatti, M., Pisano, C. & Lohe, A. (1990). Transcription of a satellite DNA on two Y chromosome loops of Drosophila melanogaster, Chromosoma, 99, 260–266.

    Google Scholar 

  • Brown, K.E., Guest, S.S., Smale, S.T., Hahm, K., Merkenschlager, M. & Fisher, A.G. (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin, Cell, 91, 845–854.

    Google Scholar 

  • Cairns, J., Overbaugh, J. & Miller, S. (1988). The origin of mutants, Nature, 335, 142–145.

    Google Scholar 

  • Charlesworth, B., Sniegowski, P. & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215–220.

    Article  PubMed  Google Scholar 

  • De Fonzo, V., Bersani, E., Aluffi-Pentini, F., Castrignano, T. & Parisi, V. (1998). Are Only Repeated Triplets Guilty? Journal of Theoretical Biology, 194, 125–142.

    Google Scholar 

  • Devlin, R.H., Bingham, B. & Wakimoto, B.T. (1990). The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster, Genetics, 125, 129–40.

    Google Scholar 

  • Dimitri, P. & Junakovic, N. (1999). Revising the selfish DNA hypothesis. Trends in Genetics, 15 No. 4, 123–124.

    Google Scholar 

  • Dobie, K.W., Lee, M., Fantes, J.A., Graham, E., Clark, A.J., Springbett, A., Lathe, R. & McClenaghan, M. (1996). Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proceedings of the National Academy of Sciences U.S.A. 93, 6659–6664.

    Google Scholar 

  • Doolittle, W.F. & Sapienza, C. (1980). Selfish genes, the prototype paradigm and genome evolution. Nature 284, 601–603.

    PubMed  Google Scholar 

  • Dorer, D. & Henikoff, S. (1994). Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell, 77, 993–1002.

    Article  PubMed  Google Scholar 

  • Felsenstein, M. & Emmons, S. (1988). Nematode repetitive DNA with ARS and segregation function in Saccharomyces cerevisia. Molecular and Cellular Biology, 8, 875–883.

    Google Scholar 

  • Forsburg, S.L. (1999) The best yeast. Trends in Genetics, 15, 337–381

    Google Scholar 

  • Gates, M.A. (1986). A simple way to look at DNA. Journal of Theoretical Biology, 119, 319–28.

    Google Scholar 

  • Gatti, M. & Pimpinelli, S. (1992). Functional elements in Drosophila melanogaster heterochromatin. Annuual Review of Genetics, 26, 239–75.

    Google Scholar 

  • Gatti, M., Pimpinelli, S. & Santini, G. (1976). Characterization of Drosophila heterochromatin. I Staining and decondensation with Hoechst 33258 and quinacrine. Chromosoma, 57, 351–375.

    Google Scholar 

  • Gaubatz, J.K. (1990) Extrachromosomal circular DNAs and genomics sequence plasticity in eukaryotic cells. Mutation Research, 237, 271–292.

    Google Scholar 

  • Goldberger, A.L. Peng, C.K., Hausdorff, J., Mietus, J., Havlin, S. & Stanley, H.E. (1996). Fractals and the Heart. In Iannaccone, P.M. & Khokha, M. (Eds), Fractal geometry in Biological systems (pp. 249–266). CRC Press, Inc.

  • Gupta, R.S. & Golding, G.B. (1996). The origin of eukaryotic cell. Trends in Biochemical Science, 21, 166–171.

    Article  Google Scholar 

  • Heitz, E. (1928). Das Heterochromatin der Moose. I. Jahrb Wiss Botanik, 69, 762–818.

    Google Scholar 

  • Hollo, G., Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Szeles, A., Szalay, A.A. & Hadlaczky, G. Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chromosome Research, 4, 240–247.

  • Iannaccone, P.M. & Khokha, M. (1996). Fractal geometry in biological systems. Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Kauffman, S. (1995). At home in the universe. New York: Oxford University Press.

    Google Scholar 

  • Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Hollo, G., Szeles, A., Ross, A.R., Sumner, A.T., Szalay, A.A. & Hadlaczky, G. (1996). De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosome. Chromosome Research, 4, 226–239.

    Google Scholar 

  • Kimura, M. (1968). Evolutionary rate at molecular level. Nature, 217, 624–626.

    PubMed  Google Scholar 

  • Labrador, M. & Corces, V.G. (1997). Transposable element-host interactions: regulation of insertion and excision. Annual Review of Genetics, 31, 381–404.

    Google Scholar 

  • Le, M.H., Duricka, D. & Karpen, G.H. (1995). Islands of Complex DNA are Widespread in Drosophila Centric Heterochromatin. Genetics, 141, 283–303.

    PubMed  Google Scholar 

  • Mandelbrot, B.B. (1983). The fractal geometry of nature. New York: W.H. Freeman.

    Google Scholar 

  • Martin, D.L. & Whitelaw, E. (1996). The variegation of variegating transgenes. Bioessays, 18, 918–923.

    Google Scholar 

  • Martin, W. & M. Muller, (1998). The hydrogen hypotesis for the first eukaryote. Nature, 392, 37–41.

    Article  Google Scholar 

  • Moore, J. (1994). The software is available on fractdna.zip at http://iubio.bio.indiana.edu/soft/ science/ibmpc/fractdna.txt (Retrievability verified January, 2003).

  • Moreira, D. & Lopez-Garcia, P. (1998). Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. Journal of Molecular Evolution, 47, 517–530.

    Google Scholar 

  • Nielsen, R. (1999). The molecular clock is gone but not forgotten. Trends in Genetics, 15, 442–443.

    Google Scholar 

  • Orgel, L.E. & Crick, F.H.C. (1980). Selfish DNA: The ultimate parasite. Nature, 284, 604–607.

    Google Scholar 

  • Palumbo, G., Berloco, M., Fanti, L., Bozzetti, M.P., Massari, S., Caizzi, R., Caggese, C., Spinelli, L. & Pimpinelli, S. (1994). Interaction systems between heterochromatin and euchromatin in Drosophila melanogaster. Genetica, 94, 267–274.

    Google Scholar 

  • Pardue, M.L., Danilevskaya, O.N., Lowenhaupt, K., Slot, F. & Traverse, KL. (1996). Drosophila telomeres: new views on chromosome evolution. Trends in Genetics, 12, 48–52.

    Google Scholar 

  • Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M. & Stanley, H.E. (1992). Long-range correlations in nucleotide sequences. Nature, 356, 168–170.

    Article  PubMed  Google Scholar 

  • Pimpinelli, S., Berloco, M., Fanti, L., Dimitri, P., Bonaccorsi, S., Marchetti, E., Caizzi, R., Caggese, C. & Gatti, M. (1995). Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proceedings of the National Academy of Sciences U.S.A., 92, 3804–3808.

    Google Scholar 

  • Pimpinelli, S. Bonaccorsi, S., Gatti, M. & Sandler, L. (1986). The peculiar genetic organization of Drosophila heterochromatin. Trends in Genetics, 2, 17–20.

    Google Scholar 

  • Pimpinelli, S. & Dimitri, P. (1989). Cytogenetic organization of the Rsp (Responder) locus in Drosophila melanogaster. Genetics, 121, 765–772.

    PubMed  Google Scholar 

  • Pimpinelli, S., Santini, G. & Gatti, M. (1976). Characterization of Drosophila heterochromatin II. C-and N-banding. Chromosoma, 57, 377–386.

    Google Scholar 

  • Prescott, D.M. (1994). The DNA of ciliated protozoa. Microbiological Review, 58, 233–267.

    Google Scholar 

  • Schultz, J. & Dobzhansky, (1934). The relation of a dominant eye color in D. melanogaster to the associated chromosome rearrangement. Genetics, 19, 344–364.

    Google Scholar 

  • Sole, R.V., Manrubia, S.C., Benton, M., Kauffman, S. & Bak, P. (1999). Criticality and scaling in evolutionary ecology. Tree, 14, 156–160.

    Google Scholar 

  • Spellman, P.T. & Rubin, G.M. (2002). Evidence for large domains of similarity expressed genes in the Drosophila genome. Journal of Biology, 1:5, p. 9.

    Google Scholar 

  • Spofford, JB. (1976). Position-effect variegation in Drosophila. In Ashburner, M. & Novitski, E. The genetic and biology of Drosophila, (Vol. 1C, pp. 955–1018). New York: Academic Press.

    Google Scholar 

  • Sprott, C. J & Rowlands, G. (1995) Chaos Data Analyzer. New York: Physics Academic Software American Institute of Physics.

    Google Scholar 

  • Stanley, H.E. (1995) Power laws and universality. Nature, 378, 554.

    Google Scholar 

  • Stanley, E.H., Buldyrev, S.V., Goldberg, A.L., Havlin, S., Mantegna, R.M., Peng, C.K. & Simons, M. (1996). Scale invariant features of coding and noncoding DNA sequences. In Iannaccone, P.M. & Khokha, M. (Eds.), Fractal geometry in Biological systems (pp. 249–266). CRC Press, Inc.

  • Viseck, T. (1992). Fractal growth phenomena, Singapore: World Scientific.

    Google Scholar 

  • Wakimoto, B.T. & Hearn, M.G. (1990). The effects of chromosome rearrangements on the expression of heterochromatic genes in Chromosome 2L of D. melanogaster. Genetics, 125, 141–54.

    Google Scholar 

  • Wallrath, L.L. (1998). Unfolding the mysteries of heterochromatin. Current Opinion in Genetics and Development, 8, 147–153.

    Google Scholar 

  • Weiler, K.S. & Wakimoto, B.T. (1995). Heterochromatin and gene expression in Drosophila. Annual Review of Genetics, 29, 577–605.

    Google Scholar 

  • Wolfe, K.H. & Shields, D.C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387, 708–713.

    PubMed  Google Scholar 

  • Wu, C.I., Lyttle, T.W., Wu, M.L. & Lin, G.F. (1988). Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell, 54, 179–89.

    PubMed  Google Scholar 

  • Wu, C.I., True, J.R. & Johnson, N. (1989). Fitness reduction associated with the deletion of a satellite DNA array. Nature, 341, 248–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Spinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinelli, G. Heterochromatin and Complexity: A Theoretical Approach. Nonlinear Dynamics Psychol Life Sci 7, 329–361 (2003). https://doi.org/10.1023/A:1025980007520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025980007520

Navigation