Skip to main content
Log in

The Rashba Effect Within the Coherent Scattering Formalism with Applications to Electron Quantum Optics

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The influence of spin–orbit coupling in electron quantum optics experiments is investigated within the framework of the Landauer–Büttiker coherent scattering formalism. We begin with a brief review of our electron quantum optics toolbox: an electron intensity interferometer (Hanbury Brown and Twiss-type experiment), an electron collision analyzer (Hong–Ou–Mandel-type experiment), and a proposed Bell state analyzer. These experiments are performed or proposed in two-dimensional electron gas systems and, therefore, may be influenced by the Rashba spin–orbit coupling. To quantify this effect, we define the creation/annihilation operators for the stationary states of the Rashba spin–orbit coupling Hamiltonian and use them to derive the current operator within the Landauer–Büttiker formalism. The current is expressed as it is in the standard spin-independent case, but with the spin label replaced by a new label that we call the spin–orbit coupling label. The spin–orbit coupling effects can then be represented in a scattering matrix that relates the spin–orbit coupling stationary states in different leads. We apply this new formalism to the case of a four-port beamsplitter, and it is shown to mix states with different spin–orbit coupling labels in a manner that depends on the angle between the leads. A noise measurement after the collision of spin-polarized electrons at an electron beamsplitter provides a new experimental means to measure the Rashba parameter α. It is also shown that the degree of electron bunching in an entangled-electron collision experiment is reduced by the spin–orbit coupling according the beamsplitter lead angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1(2000).

    Google Scholar 

  2. R. Hanbury Brown and R. Q. Twiss, Nature 177, 27(1956).

    Google Scholar 

  3. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044(1987).

    Google Scholar 

  4. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777(1935).

    Google Scholar 

  5. N. Bohr, Phys. Rev. 48, 696(1935).

    Google Scholar 

  6. D. Bohm, Quantum Theory (Constable, London, 1954).

    Google Scholar 

  7. J. S. Bell, Physics 1, 195(1964).

    Google Scholar 

  8. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460(1981).

    Google Scholar 

  9. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 81, 5039(1998).

    Google Scholar 

  10. P. Grangier, J. A. Levenson, and J.-P. Poizat, Nature 396, 537(1998).

    Google Scholar 

  11. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, Nature 400, 239(1999).

    Google Scholar 

  12. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390, 575(1997).

    Google Scholar 

  13. D. Boschi, S. Branca, F. D. Martini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80, 1121(1998).

    Google Scholar 

  14. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706(1998).

    Google Scholar 

  15. M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340(1995).

    Google Scholar 

  16. A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778(1996).

    Google Scholar 

  17. A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806(1996).

    Google Scholar 

  18. R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370(1997).

    Google Scholar 

  19. L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526(1997).

    Google Scholar 

  20. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature 389, 162(1997).

    Google Scholar 

  21. R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391, 263(1998).

    Google Scholar 

  22. M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, and C. Schonenberger, Science 284, 296(1999).

    Google Scholar 

  23. W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Science 284, 299(1999).

    Google Scholar 

  24. E. Comforti, Y. C. Chung, M. Heiblum, V. Umansky, and D. Mahalu, Nature 416, 515(2002).

    Google Scholar 

  25. M. Biittiker, Phys. Rev. B 46, 12485(1992).

    Google Scholar 

  26. T. Martin and R. Landauer, Phys. Rev. B 45, 1742(1992).

    Google Scholar 

  27. G. Dresselhaus, Phys. Rev. 100, 580(1955).

    Google Scholar 

  28. E. I. Rashba, Sov. Phys. Solid State 2, 1109(1960).

    Google Scholar 

  29. Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78(1984).

    Google Scholar 

  30. W. D. Oliver, R. C. Liu, J. Kim, X. Maitre, L. D. Carlo, and Y. Yamamoto, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectroncs, I. O. Kulik and R. Ellialtioglu (ed.), (Kluwer Academic Publishers, Dordrecht, 2000), pp. 457–466.

    Google Scholar 

  31. G. Feve, W. D. Oliver, M. Aranzana, and Y. Yamamoto, Phys. Rev, B 66, 155328(2002).

    Google Scholar 

  32. R. Landauer, Phil. Mag. 21, 863(1970).

    Google Scholar 

  33. V. A. Khlus, Sov. Phys. JETP 66, 1243(1987).

    Google Scholar 

  34. B. J. Van Wees, H. V. Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. V. der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848(1988).

    Google Scholar 

  35. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209(1988).

    Google Scholar 

  36. A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300(1989).

    Google Scholar 

  37. G. B. Lesovik, JETP Lett. 49, 592(1989).

    Google Scholar 

  38. M. Biittiker, Phys. Rev. Lett. 65, 2901(1990).

    Google Scholar 

  39. B. Yurke and G. P. Kochanski, Phys. Rev. B 41, 8184(1990).

    Google Scholar 

  40. G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61, R16303(2000).

    Google Scholar 

  41. X. Maitre, W. D. Oliver, and Y. Yamamoto, Physica E 6, 301(2000).

    Google Scholar 

  42. M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, Phys. Rev. A 53, R1209(1996).

    Google Scholar 

  43. G. A. Rebka and R. V. Pound, Nature 180, 1035(1957).

    Google Scholar 

  44. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691(1977).

    Google Scholar 

  45. F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203(1987).

    Google Scholar 

  46. S. Oberholzer, M. Henny, C. Strunk, C. Schonenberger, T. Heinzel, K. Ensslin, and M. Holland, Physica E 6, 314(2000).

    Google Scholar 

  47. H. Kiesel, A. Renz, and F. Hasselbach, Nature 418, 392(2002).

    Google Scholar 

  48. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500(1999).

    Google Scholar 

  49. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282(2000).

    Google Scholar 

  50. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett. 86, 1502(2001).

    Google Scholar 

  51. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968).

    Google Scholar 

  52. B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278(1990).

    Google Scholar 

  53. G. L. Chen, J. Han, T. T. Huang, S. Datta, and D. B. Janes, Phys. Rev. B 47, 4084(1993).

    Google Scholar 

  54. J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 41, 7685(1990).

    Google Scholar 

  55. F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Japan 37, 1325(1974).

    Google Scholar 

  56. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437(1982).

    Google Scholar 

  57. P. Pfeffer and W. Zawadzki, Phys. Rev. B 52, 14332(1995).

    Google Scholar 

  58. P. Pfeffer, Phys. Rev. B 55, 7359(1997).

    Google Scholar 

  59. L. Wissinger, U. Rössler, R. Winkler, B. Jusserand, and D. Richards, Phys. Rev. B 58, 15375(1998).

    Google Scholar 

  60. P. Pfeffer, Phys. Rev. B 59, 15902(1999).

    Google Scholar 

  61. J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev. Lett. 78, 1335(1997).

    Google Scholar 

  62. G. Engels, J. Lange, T. Schäpers and H. Lüth, Phys. Rev. B 55, 1958(1997).

    Google Scholar 

  63. J. P. Heida, B.J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911(1998).

    Google Scholar 

  64. T. Schäpers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, and H. Lüth, J. Appl. Phys. 83, 4324(1998).

    Google Scholar 

  65. C. M. Hu, J. Nitta, T. Akazaki, H. Takayanagi, J. Osaka, P. Pfeffer, and W. Zawadzki, Phys. Rev. B 60, 7736(1999).

    Google Scholar 

  66. D. Grundler, Phys. Rev. Lett. 84, 6074(2000).

    Google Scholar 

  67. T. Matsuyama, R. Kürsten, C. Messner, and U. Merkt, Phys. Rev. B 61, 15588(2000).

    Google Scholar 

  68. T. Hassenkam, S. Pedersen, K. Baklanov, A. Kristensen, C. B. Sorensen, P. E. Lindelof, F. G. Pikus, and G. E. Pikus, Phys. Rev. B 55, 9298(1997).

    Google Scholar 

  69. A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272(1999).

    Google Scholar 

  70. J. C. Egues, G. Burkard, and D. Loss, Preprint cond-mat/0204639 (2002).

  71. J. C. Egues, G. Burkard, and D. Loss, Preprint cond-mat-0207392 (2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, W.D., Feve, G. & Yamamoto, Y. The Rashba Effect Within the Coherent Scattering Formalism with Applications to Electron Quantum Optics. Journal of Superconductivity 16, 719–733 (2003). https://doi.org/10.1023/A:1025318007812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025318007812

Navigation