Skip to main content
Log in

Thermodynamic Properties of Alanylpeptide Buffer Systems and Their Potential as Standards in Biological Applications

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The second dissociation constants pK 2of the NH3 +charge center of the alanylpeptides, alanylglutamine (Ala–Gln), alanylleucine (Ala–Leu), alanylglycine (Ala–Gly), and DL-alanyl–DL-methionine (DL-Ala–DL-Met) were determined at ten temperatures in the range, 5–50°C. These pK 2values were calculated from the emf of cells containing buffer solutions of these dipeptides. A cell of the type described by Harned and Ehlers,(1)utilizing hydrogen and silver–silver bromide electrodes was used. The thermodynamic quantities, ΔHo, ΔSo, and ΔCp owere derived from the temperature coefficients of the dissociation constants. The pK 2values at 25°C, 8.2105 ( Ala–Gln), 8.2668 ( Ala–Leu), 8.2940 ( Ala–Gly), and 8.3054 ( DL-Ala–DL-Met). These values show that different substituent groups on the α-carbon atom (which include polar and nonpolar groups), have a small effect on the dissociation of the NH3 +charge center. These compounds were also found to be suitable as buffers in the pH range(7–9). The thermodynamics of the solute–solvent interaction is interpreted in terms of the mixture model.(2)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Harned and R.W. Ehlers, J. Amer. Chem. Soc. 54, 1350(1932).

    Google Scholar 

  2. P.J. Rossky and M. Karplus, J. Amer. Chem. Soc. 101, 1913(1979).

    Google Scholar 

  3. H.S. Harned and R.A. Robinson, Trans. Faraday Soc. 36, 973(1940).

    Google Scholar 

  4. V.B. Naidoo and M. Sankar, J. Solution. Chem. 27(6), 553(1998).

    Google Scholar 

  5. C.A. Vega and R.G. Bates, Anal. Chem. 48, 493(1976).

    Google Scholar 

  6. R.G. Bates and M. Sankar, Anal. Chem. 50, 1922(1978).

    Google Scholar 

  7. W. Hulett and M. Bonner, J. Am. Chem. Soc. 31, 390(1909).

    Google Scholar 

  8. R.G. Bates, Chem. Anal. 50, 117(1961).

    Google Scholar 

  9. R.G. Bates, R.N. Roy, and R.A. Robinson, Anal. Chem. 45, 1663(1973).

    Google Scholar 

  10. R.G. Bates, Determination of pH Theory and Practice, 2nd edn. (Wiley, New York, 1973, Chap IV, p. 90.

    Google Scholar 

  11. R.N. Roy, R.A. Robinson, and R.G. Bates, J. Chem. Thermodyn. 5, 559(1973).

    Google Scholar 

  12. J.W. Bayles and M. Sankar, J. Chem. Soc. Perkins Trans II 1, 102(1977).

    Google Scholar 

  13. M. Sankar and J.W. Bayles, J. Solution Chem. 22, 1099(1993).

    Google Scholar 

  14. R.G. Bates, C.A. Vega, and D.R. White, Anal. Chem. 50, 1295(1978).

    Google Scholar 

  15. S.P. Datta, A.K. Grzybowski, and R.G. Bates, J. Phys. Chem. 68, 275(1964).

    Google Scholar 

  16. H.B. Hetzer, R.A. Robinson, and R.G. Bates, J. Phys. Chem. 66, 1423(1962).

    Google Scholar 

  17. J.H. Ashby, E.M. Crook, and S.P. Datta, J. Biochem. 56, 190(1954).

    Google Scholar 

  18. N.W. Please, J. Biochem. 56, 196(1954).

    Google Scholar 

  19. T.S. Sharma and J.C. Ahluwalia, Chem. Soc. Rev., p. 203(1976).

  20. F. Franks and D.S. Reid, Water, A Comprehensive Treatise, Vol. 2, F. Franks, Ed. (Plenum Press, New York, 1975), Chap 5.

    Google Scholar 

  21. F. Franks, Water, A Comprehensive Treatise, Vol. 4, F. Franks, Ed. (Plenum Press, New York, 1975), Chap. 1.

    Google Scholar 

  22. M.D. Zeidler, Water, A Comprehensive Treatise Vol. 2, F. Franks, Ed. (Plenum Press, New York, 1975), Chap. 10.

    Google Scholar 

  23. F. Franks, J. Ravenhill, P.A. Egelstaff, and D.I. Page, Proc. Roy. Soc. London Ser. A319, 189(1970).

    Google Scholar 

  24. S. Cabani, G. Conti, and E. Matledi, Biopolymers 16, 465(1977).

    Google Scholar 

  25. D.D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solutions(Butterworths, London, 1965).

    Google Scholar 

  26. E. Ellenborgen, J. Amer. Chem. Soc. 74, 5198(1952).

    Google Scholar 

  27. Y.K. Yang, K.D. Gibson, G. Nemethy, and H.A. Scheraga, J. Phy. Chem. 92, 4739(1988).

    Google Scholar 

  28. T.H. Lilley, J. Pure Appl. Chem. 65, 2551(1993).

    Google Scholar 

  29. J.V. Leyendekkers, J. Chem. Soc. Faraday Trans. I 85, 663(1989).

    Google Scholar 

  30. Y. Marcus, J. Chem. Soc. Faraday Trans. 87, 2995(1987).

    Google Scholar 

  31. V. Pallabhi, K. Venkatesan, and S. R. Hall, J. Chem. Soc. Perkins Trans. II, 1722(1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Nevines, J., Singh, M. et al. Thermodynamic Properties of Alanylpeptide Buffer Systems and Their Potential as Standards in Biological Applications. Journal of Solution Chemistry 32, 435–450 (2003). https://doi.org/10.1023/A:1024572811929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024572811929

Navigation