Skip to main content
Log in

Dynamical Spin Susceptibility in the tJ Model in the Superconducting Phase

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Dynamical spin susceptibility is calculated for the tJ model in the superconducting phase using the memory function method in terms of the Hubbard operators. The self-consistent system of equations for the memory function is obtained within the mode-coupling approximation. Both itinerant hole excitations and localized spin fluctuations contribute to the memory function. Moreover, the itinerant contribution itself consists of two parts, i.e., the contribution of Bogoliubov quasiparticles and that of Cooper pairs. The spin dynamics is diffusive in the hydrodynamic limit, but the itinerant part does not contribute to the spin diffusion. In the high frequency region, spin–wave-like excitations continue to exist. We discuss our analytic results in the light of neutron scattering experiments performed on the cuprate superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Jackeli and N. M. Plakida, Theor. Math. Phys., 114, 335 (1998).

    Google Scholar 

  2. A. D. Kampf, Phys. Rep., 249, 219 (1994).

    Google Scholar 

  3. T. Tanamoto, H. Konho, and H. Fukuyama, J. Phys. Soc. Japan, 63, 2379 (1994).

    Google Scholar 

  4. G. Stemman, C. Pepin, and M. Lavagna, Phys. Rev. B, 50, 4075 (1994).

    Google Scholar 

  5. P. Hedegard and M. B. Pedersen, Phys. Rev. B, 43, 11504 (1991); C. L. Kane, P. A. Lee, T. K. Ng, B. Chakraborty, and N. Read, Phys. Rev. B, 41, 2653 (1990); A. Auerbach and B. E. Larson, Phys. Rev. B, 43, 7800 (1991).

    Google Scholar 

  6. Yu. A. Izyumov and B. M. Letfulov, J. Phys.: Condens. Matter, 2, 8905 (1990); Yu. A. Izyumov and J. A. Hedersen, Internat. J. Mod. Phys. B, 8, 1877 (1994).

    Google Scholar 

  7. F. Onufrieva and J. Rossat-Mignod, Phys. Rev. B, 52, 7572 (1995).

    Google Scholar 

  8. V. G. Vaks, A. I. Larkin, and S. A. Pikin, JETP, 26, 647 (1968).

    Google Scholar 

  9. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, New York (1975).

    Google Scholar 

  10. P. Bourges, “From magnons to the resonance peak: spin dynamics in high-TC superconducting cuprates by inelastic neutron scattering,” in: The Gap Symmetry and Fluctuations in High Temperature Superconductors (NATO ASI Ser. Phys., Vol. 371, J. Bok, G. Deutscher, D. Pavuna, and S. A. Wolf, eds.), Plenum, New York (1998), p. 349; cond-mat/9901333 (1999); H. Yoshikawa and T. Moriya, J. Phys. Soc. Japan, 68, 1340 (1999); J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Phys. C, 185-189, 86 (1991); H. A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, T. Armstrong, N. S. Berzigiarova, N. N.Kolesnikov, amd B. Keimer, Phys. Rev. Lett., 70, 3490 (1993); H He, P. Bourges, Y. Sidis, C. Ulrich, L. P. Regnault, and S. Pailhès, Science, 295, 1045( 2002).

    Google Scholar 

  11. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon, Oxford (1984).

    Google Scholar 

  12. D. N. Zubarev, Sov. Phys. Usp., 3, 320 (1960); Yu. A. Tserkovnikov, Theor. Math. Phys., 49, 712 (1981); 52, 147 (1982).

    Google Scholar 

  13. W. Götze and G. M. Vujicic, Phys. Rev. B, 38, 9398 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, R. Dynamical Spin Susceptibility in the tJ Model in the Superconducting Phase. Theoretical and Mathematical Physics 136, 1022–1030 (2003). https://doi.org/10.1023/A:1024553723685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024553723685

Navigation