Skip to main content
Log in

Effect of copper additive on Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 alloy anode for nickel–metal hydride batteries

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Zr1−x Ti x V0.2Mn0.6Cr0.05Co0.05Ni1.2 (0 ≤ x ≤ 0.3) alloys have been characterized as metal–hydride electrodes for nickel–metal hydride batteries. Although the alloy electrodes with no Ti substitution in place of Zr exhibit a specific capacity value of 375 mA h g−1, it has been possible to enhance the specific capacity of the electrodes to 395 mA h g−1 by substituting 10% Ti in place of Zr, that is, with Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 alloy. The specific capacity value of Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 alloy was further enhanced to 415 mA h g−1 on copper powder addition. Interestingly, the discharge curves for the latter electrode are quite flat thus providing an advantage of constant specific energy output over the entire regime of electrode discharge. Both a.c. impedance and d.c. linear polarization studies conducted on these electrodes lead to a lower charge-transfer resistance value for the metal-hydride electrode with copper additive suggesting the electrode with copper powder additive to have a higher catalytic activity than those without copper. The electrode with the copper additive also exhibits little change in its capacity over about 100 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Vincent and B. Scrosati, ‘Modern Batteries’, (Arnold, London, 1997).

    Google Scholar 

  2. A.K. Shukla, S. Venugopalan and B. Hariprakash, J. Power Sources 100 (2001) 125.

    Google Scholar 

  3. R.M. Dell and D.A.J. Rand, ‘Understanding Batteries'. (Royal Society of Chemistry, Cambridge, UK 2002).

    Google Scholar 

  4. B. Knosp, C. Jordy, Ph. Blanchard and T. Berlureau, J. Electrochem. Soc. 145 (1998) 1478.

    Google Scholar 

  5. D-M. Kim, S-W. Jeon and J-Y. Lee, J. Alloys Comp. 279 (1998) 209.

    Google Scholar 

  6. J.S. Yu, H. Lee, P.S. Lee and J.Y. Lee, J. Electrochem. Soc. 147 (2000) 2494.

    Google Scholar 

  7. V. Ganesh Kumar, N. Munichandriah and A.K. Shukla, J. Power Sources 63 (1996) 203.

    Google Scholar 

  8. V. Ganesh Kumar, K.M. Shaju, N. Munichandraiah and A.K. Shukla, J. Power Sources 76 (1998) 106.

    Google Scholar 

  9. S. Rodrigues, N. Munichandriah and A.K. Shukla, J. Appl. Electrochem. 29 (1999) 1285.

    Google Scholar 

  10. K.M. Shaju, V. Ganesh Kumar, S. Rodrigues, N. Munichandriah and A.K. Shukla, J. Appl. Electrochem. 30 (2000) 347.

    Google Scholar 

  11. S. Rodrigues, N. Munichandriah and A.K. Shukla, Proc. Indian Acad. Sci. 113, (2001) 527.

    Google Scholar 

  12. W. Losocha and K. Lewinski, J. Appl. Crystallogr. 27 (1994) 437.

    Google Scholar 

  13. B.A. Boukamp, ‘Equivalent Circuit’, Users Manual (University of Twente, The Netherlands, 1989).

    Google Scholar 

  14. J-S. Yu, H. Lee, S-M. Lee and J-Y. Lee, J. Electrochem. Soc. 146 (1999) 4366.

    Google Scholar 

  15. H. Lee, S-M. Lee and J-Y. Lee, J. Electrochem. Soc. 146 (1999) 3666.

    Google Scholar 

  16. W.K. Choi, S.G. Zhang, J.I. Murayama, R.S. Ya, H. Inoue and C. Iwakura, J. Alloys Comp. 280 (1998) 99.

    Google Scholar 

  17. M.S. Wu, H.R. Wu, Y.Y. Wang and C.C. Wan, J. Alloys Comp. 302 (2000) 248.

    Google Scholar 

  18. A. Zuttel, F. Meli and L. Schlapbach, J. Alloys Comp. 209 (1994) 99.

    Google Scholar 

  19. J-H. Jung, H-H. Lee, D-M. Kim, B-H. Liu, K-Y. Lee and J-Y. Lee. J. Alloys Comp. 253-254 (1997) 652.

    Google Scholar 

  20. S-M. Lee, D-M. Kim, J-S. Yu, K-J. Jang and J-Y. Lee, J. Electrochem. Soc. 145 (1998) 1953.

    Google Scholar 

  21. X.L. Wang and S. Suda, J. Alloys Comp. 231 (1995) 380.

    Google Scholar 

  22. N. Kuriyama, T. Sakai, H. Miyamura I. Uehara, H. Ishikawa and T. Iwasaki, J. Alloys Comp. 202 (1993) 183.

    Google Scholar 

  23. W. Zhang, M.P. Sridhar Kumar and S. Srinivasan, J. Electrochem. Soc. 142 (1995) 2935.

    Google Scholar 

  24. M. Geng, J. Han, F. Feng and D.O. Northwood, J. Electrochem. Soc. 146 (1999) 3591.

    Google Scholar 

  25. G. Zheng, B.N. Popov and R.E. White, J. Electrochem. Soc. 143 (1996) 834.

    Google Scholar 

  26. B.N. Popov, G. Zheng and R.E. White, J. Appl. Electrochem. 26 (1996) 603.

    Google Scholar 

  27. J. Chen, D-H. Bradhurst, S-X. Dou and H-K. Liu, J. Alloys Comp. 265 (1998) 281.

    Google Scholar 

  28. D-M. Kim, S-M. Lee, K-J. Jang and J-Y. Lee, J. Alloys Comp. 268 (1998) 241.

    Google Scholar 

  29. H. Ye, B. Xia, W. Wu, K. Du and H. Zhang, J. Power Sources 111 (2002) 145.

    Google Scholar 

  30. S.R. Ovshinsky, M.A. Fetcenko and J. Ross, Science 260 (1993) 176.

    Google Scholar 

  31. C. Iwakura, Y. Kajiya, H. Yoneyama, T. Sakai, K. Oguro and H. Ishikawa, J. Electrochem. Soc. 136 (1989) 1351.

    Google Scholar 

  32. C. Jeong, W. Chung, C. Iwakura and I. Kim, J. Power Sources 79 (1999) 19.

    Google Scholar 

  33. D. Linden and T.B. Reddy, ‘Handbook of Batteries’, (McGraw-Hill, New York, 2002).

    Google Scholar 

  34. J-S. Yu, S-M. Lee, K. Cho and J-Y. Lee, J. Electrochem. Soc. 147 (2000) 2013.

    Google Scholar 

  35. H. Miyamura, T. Sakai, N. Kuriyama, K. Oguro, I. Uehara and H. Ishikawa, Z. Phy. Chem. 183 (1994) 347.

    Google Scholar 

  36. M.A. Fetcenko, S. Venkatesan and S.R. Ovshinsky, in D.A. Corrigan and S. Srinivasan (Eds), ‘Hydrogen storage materials, Batteries, and Electrochemistry’, (The Electrochemical Society Proceedings Series, Pennington, NJ, 1992), p. 41.

    Google Scholar 

  37. T. Sakai, H. Ishikawa, K. Oguro, C. Iwakura and H. Yoneyama, J. Electrochem. Soc. 134 (1987) 558.

    Google Scholar 

  38. W. Zhang, A. Visintin, S. Srinivasan, A.J. Appleby and H.S. Lim, J. Power Sources 75 (1998) 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariprakash, B., Martha, S. & Shukla, A. Effect of copper additive on Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 alloy anode for nickel–metal hydride batteries. Journal of Applied Electrochemistry 33, 497–504 (2003). https://doi.org/10.1023/A:1024482806412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024482806412

Navigation