Skip to main content
Log in

ION–Neutral Collisions Effect on MHD Surface Waves

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The effect of ion–neutral collisions on the propagation of MHD waves and surface waves at a single magnetic interface is investigated. The dispersion equations for MHD waves in a partially ionized medium are derived. There are three damped propagating modes in a uniform unbounded medium: an Alfvén mode, and fast and slow modes. The damping of waves depends on both the collisional frequency and the ionization fraction. Wave damping increases as ionization fraction decreases. Surface waves are discussed in three cases: (a) the incompressible limit, (b) the low β plasma, and (c) for parallel propagation. The incompressible limit leads to Alfvén surface waves in a partially ionized medium and the dispersion characteristics are similar to those obtained by Uberoi and Datta. In the low β plasma of the Earth's auroral F region there are two damped propagating magnetoacoustic surface waves for θ=π/3. There is only one damped surface mode for θ=π/2, but no surface wave is able to propagate for θ=0°. For the case of parallel propagation (θ=0°) the results obtained in the absence of ion-neutral collisions are consistent with the results of Jain and Roberts. It is found that a three-mode structure of damped propagating waves occurs owing to ion–neutral collisions for a comparatively high ionization fraction. For the case of the solar photosphere, where the ionization fraction is low, two weakly damped surface waves are found, though the damping is almost negligible. The pattern of propagation is similar to that found in the case discussed by Jain and Roberts, but the wave speeds are lower due to ion–neutral collisions. The strong collisions tie the ion–neutral species together and reduce the damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1954, On the Origin of Solar System, Clarendon Press, Oxford.

    Google Scholar 

  • Amagishi, Y. and Tanaka, M.: 1993, Phys. Rev Lett.. 71, 360.

    Google Scholar 

  • Amagishi, Y. and Tsushima, A.: 1984, Plasma Phys. Controlled Fusion 26, 1489.

    Google Scholar 

  • Balsara, D. S.: 1996, Astrophys. J. 465, 775.

    Google Scholar 

  • Basu, B. and Coppi, B.: 1989, J.Geophys. Res. 94, 5316.

    Google Scholar 

  • Bhatia, P.K.: 1974, J.Plasma Phys. 11, 1.

    Google Scholar 

  • Carvens, T. E.: 1986, in B. Battrick, E. J. Rolfe and R. Reinhard (eds.), Proc. 20th ESLAB Symposium on the Exploration of Halley's Comet Vol. 1, Publ. Div., ESTEC, Noordwijk, p. 241.

    Google Scholar 

  • Ershkovich, A. I., McKenzie, J. F., and Axford, W. I.: 1989, Astrophys. J. 344, 932.

    Google Scholar 

  • Hoh, F. C.: 1963, Phys. Fluids 6, 1184.

    Google Scholar 

  • Ip, W. H. and Axford, W.I.: 1987, Nature 325, 418.

    Google Scholar 

  • Jain, R. and Roberts, B.: 1991, Solar Phys. 133, 263.

    Google Scholar 

  • Kulsrud, R. and Pearce, W. P.: 1969, Astrophys. J. 156, 445.

    Google Scholar 

  • Kumar, N. and Srivastava, K. M.: 1998, J. Plasma Phys. 60, 731.

    Google Scholar 

  • Lehnert, B.: 1959, Suppl. Nuovo Cimento 13, 59.

    Google Scholar 

  • Lehnert, B.: 1960, Arkiv Physik 18, 251.

    Google Scholar 

  • Lehnert, B.: 1968, Nucl. Fusion 8, 173.

    Google Scholar 

  • Lehnert, B.: 1972a, Electron. and Plasma Phys. Roy. Inst. of Tech., Stockholm, Rep. TRITA-EPP-72-05.

  • Lehnert, B.: 1972b, Electron. and Plasma Phys. Roy. Inst. of Tech., Stockholm, Rep. TRITA-EPP-72-06.

  • Lehnert, B.: 1972c, Proc. Fifth European Conf. on Controlled Fusion and Plasma Phys., Grenoble, p. 32.

  • Maheshwari, S. L. and Bhatia, P. K.: 1978, J. Plasma Phys. 19, 83.

    Google Scholar 

  • Martin, C. E., Heyvaerts, J., and Priest, E. R.: 1997, Astron. Astrophys. 326, 1176.

    Google Scholar 

  • Miles, A. J. and Roberts, B.: 1989, Solar Phys. 119, 257.

    Google Scholar 

  • Muller, G.: 1974, Plasma Phys. 16, 813.

    Google Scholar 

  • Myers, P. C. and Goodman, A.: 1988, Astrophys. J. 326, L27.

    Google Scholar 

  • Piddington, J. H.: 1954a, Monthly Notices Royal Astron. Soc. 14, 638.

    Google Scholar 

  • Piddington, J. H. 1954b, Monthly Notices Royal Astron. Soc. 14, 651.

    Google Scholar 

  • Pudritz, R. E.: 1990, Astrophys. J. 350, 195.

    Google Scholar 

  • Roberts, B.: 1981, Solar Phys. 69, 27.

    Google Scholar 

  • Roberts, B.: 1991, in E. R. Priest and A. W. Hood (eds.), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Shukla, P. K., Mirza, A. M., and Faria, R. T., Jr.: 1998, J. Geophys. Res., 103, 9417.

    Google Scholar 

  • Simon, A.: 1963, Phys. Fluids 6, 382.

    Google Scholar 

  • Suzuki, M. and Sakai, J.I.: 1996, Astrophys. J. 465, 393.

    Google Scholar 

  • Swanson, D. G.: 1989, Plasma Waves, Academic Press, New York.

    Google Scholar 

  • Uberoi, C. and Datta, A.: 1998, Phys. Plasmas 5, 4149.

    Google Scholar 

  • Wentzel, D. G.: 1979, Astrophys. J. 227, 319.

    Google Scholar 

  • Zweibel, E. G.: 1989, Astrophys. J. 340, 550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Roberts, B. ION–Neutral Collisions Effect on MHD Surface Waves. Solar Physics 214, 241–266 (2003). https://doi.org/10.1023/A:1024299029918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024299029918

Keywords

Navigation