Skip to main content
Log in

Transposable Elements and Vertebrate Protein Diversity

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Interspersed repetitive sequences are major components of eukaryotic genomes. Repetitive elements comprise about 50% of the mammalian genome. They interact with the whole genome and influence its evolution. Repetitive elements may serve as recombination hot spots or acquire specific cellular functions such as RNA transcription control or become part of protein coding regions. The latter is a subject of presented analysis. We searched all currently available vertebrate protein sequences, including human proteome complement for the presence of transposable elements. It appears that insertion of TE-cassettes into open reading frames is a general phenomena. They can be found in all vertebrate lineages and originate in all types of transposable elements. It seems that genomes use those cassettes as ‘ready to use’ motifs in their evolutionary experiments. Most of TE-cassettes are used to create alternative forms of a message and usually the other form, without TE-cassette, is expressed in a cell. Tables listing vertebrate messages with TE-cassettes are available at http://warta.bio.psu.edu/ScrapYard/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brosius, J., 1991. Retroposons-seeds of evolution. Science 251(4995): 753.

    PubMed  Google Scholar 

  • Cairns, J.S., J.M. Curtsinger et al., 1985. Sequence polymorphism of HLA DR beta 1 alleles relating to T-cell-recognized determinants. Nature 317(6033): 166-168.

    PubMed  Google Scholar 

  • Cairns, J.S., C.A. Dahl et al., 1988. Identification of a novel DR beta cDNA clone. Nucl Acids Res 16(19): 9353.

    PubMed  Google Scholar 

  • Caras, I.W., M.A. Davitz et al., 1987. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325(6104): 545-549.

    PubMed  Google Scholar 

  • Claverie, J.M., 1992. Identifying coding exons by similarity search: alu-derived and other potentially misleading protein sequences. Genomics 12(4): 838-841.

    PubMed  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757): 601-603.

    PubMed  Google Scholar 

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5(4): 103-107.

    Google Scholar 

  • Gregersen, P.K., M. Shen et al., 1986. Molecular diversity of HLADR4 haplotypes. Proc Natl Acad Sci USA 83(8): 2642-2646.

    PubMed  Google Scholar 

  • Hickey, D.A., 1982. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101(3-4): 519-531.

    PubMed  Google Scholar 

  • Jurka, J., 2000. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16(9): 418-420.

    PubMed  Google Scholar 

  • Maka?owska, I., R. Sood et al., 2002. Identification of six novel genes by experimental validation of GeneMachine predicted genes. Gene in press.

  • Maka?owski, W., 1995. pp. 86-104 in SINEs as a genomic scrap yard: an essay on genomic evolution, The Impact of Short Interspersed Elements (SINEs) on the Hpst Genome edited by R.J. Maraia. R.G. Landes Company, Austin.

    Google Scholar 

  • Maka?owski, W., 2000. Genomic scrap yard: how genomes utilize all that junk. Gene 259(1-2): 61-67.

    PubMed  Google Scholar 

  • Maka?owski, W., G.A. Mitchell et al., 1994. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 10(6): 188-193.

    Article  PubMed  Google Scholar 

  • Orgel, L.E. & F.H. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284(5757): 604-607.

    PubMed  Google Scholar 

  • Pruitt, K.D. & D.R. Maglott, 2001. RefSeq and LocusLink: NCBI gene-centered resources. Nucl Acids Res 29(1): 137-140.

    PubMed  Google Scholar 

  • The Gene Ontology Consortium, 2001. Creating the gene ontology resource: design and implementation. Genome Res 11(8): 1425-1433.

    Google Scholar 

  • Tugendreich, S., Q. Feng et al., 1994. Alu sequences in RMSA-1 protein? Nature 370(6485): 106.

    PubMed  Google Scholar 

  • Zhang, M.Q., 1998. Statistical features of human exons and their flanking regions. Hum Mol Genet 7(5): 919-932.

    PubMed  Google Scholar 

  • Zietkiewicz, E., W. Maka?owski et al., 1994. Phylogenetic analysis of a reported complementary DNA sequence. Science 265(5175): 1110-1111.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Makałowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenc, A., Makałowski, W. Transposable Elements and Vertebrate Protein Diversity. Genetica 118, 183–191 (2003). https://doi.org/10.1023/A:1024105726123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024105726123

Navigation