Skip to main content

Advertisement

Log in

Protein phosphatase-2A regulates protein tyrosine phosphatase activity in Lewis lung carcinoma tumor variants

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cellular adherence and motility are processes that are controlled by focal adhesion assembly and disassembly. Consequently, the dynamics of focal adhesions regulate tumor cell metastasis and are influenced by the tyrosine phosphorylation state of paxillin. Metastatic LLC cells are more migratory and have reduced paxillin tyrosine phosphorylation as compared to nonmetastatic LLC cells. In nonmetastatic Lewis lung carcinoma (LLC) tumor cells, inhibition of the serine/threonine protein phosphatase-2A (PP-2A) activity results in increased motility that is associated with a reduction in the phosphotyrosine content of paxillin. Studies to determine if PP-2A can regulate protein tyrosine phosphatase activity showed that blocking PP-2A activity of nonmetastatic LLC-C8 tumor cells with okadaic acid reduces protein tyrosine phosphatase activity. Among the tyrosine phosphatases whose activity was inhibited upon PP-2A inhibition is Shp-2. In contrast, protein levels of Shp-2 are unaffected by PP-2A inhibition. While these results do not fully identify how inhibition of PP-2A results in tyrosine dephosphorylation of paxillin, they do demonstrate that PP-2A can link serine/threonine and tyrosine signaling pathways by regulating protein tyrosine phosphatases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Chen B, Blystone SD et al. Differential expression of alphav integrins in K1735 melanoma cells. Invasion Metastasis 1998; 18: 1–14.

    Article  PubMed  Google Scholar 

  2. Zheng DQ, Woodard AS, Fornaro Met al. Prostatic carcinoma cell migration via alpha(v)beta(3) integrin is modulated by a focal adhesion kinase pathway. Cancer Res 1999; 59: 1655–64.

    PubMed  CAS  Google Scholar 

  3. Sliva D, Mason R, Xiao H et al. Enhancement of the migration of metastatic human breast cancer cells by phosphatidic acid. Biochem Biophys Res Commun 2000; 268: 471–9.

    Article  PubMed  CAS  Google Scholar 

  4. Tester AM, Ruangpani N, Anderso RL et al. MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 2000; 18: 553–60.

    Article  PubMed  CAS  Google Scholar 

  5. Lu Z, Jiang G, Blume-Jensen P et al. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 2001; 21: 4016–31.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu Z, Sanchez-Sweatman O, Huang X et al. Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res 2001; 1707–16.

  7. Mao W, Irby R, Coppola D et al. Activation of c-src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 1997; 15: 3083–90.

    Article  PubMed  CAS  Google Scholar 

  8. Nakagawa T, Tanaka S, Suzuki H et al. Overexpression of the csk gene suppresses tumor metastasis in vivo. Int J Cancer 2000; 88: 384–91.

    Article  PubMed  CAS  Google Scholar 

  9. Mariotti A, Kedeshian PA, Dans M et al. EGF-R signaling through fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: Role in epithelial cell migration and carcinoma invasion. J Cell Biol 2001; 155: 447–58.

    Article  PubMed  CAS  Google Scholar 

  10. Young MRI, Duffie GP, Lozano Y et al. Association of a functional prostaglandin E2-protein kinase A coupling with responsiveness of metastatic Lewis lung carcinoma variants to prostaglandin E2 and to prostaglandin E2-producing nonmetastatic Lewis lung carcinoma tumor variants. Cancer Res 1990; 50: 2973–8.

    PubMed  CAS  Google Scholar 

  11. Young MRI, Montpetit M, Lozano Y et al. Regulation of Lewis lung carcinoma invasion and metastasis by protein kinase A. Int J Cancer 1995; 61: 104–9.

    PubMed  CAS  Google Scholar 

  12. Maier GD, Vellody K, Meisinger JA et al. Protein kinase A regulates Lewis lung carcinoma adherence to extracellular matrix components and spontaneous metastasis. Clin Exp Metastasis 1996; 14: 314–22.

    PubMed  CAS  Google Scholar 

  13. Dennis JU, Dean NM, Bennett CF et al. Human melanoma metastasis is inhibited following ex vivo treatment with an antisense oligonucleotide to protein kinase C-alpha. Cancer Lett 1998; 128: 65–70.

    Article  PubMed  CAS  Google Scholar 

  14. Kiley SC, Clark KJ, Goodnough M et al. Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Res 1999; 59: 3230–8.

    PubMed  CAS  Google Scholar 

  15. LaPorta CA, Di Dio A, Porro D et al. Overexpression of novel protein kinase C delta in BL6 murine melanoma cells inhibits the proliferative capacity in vitro but enhances the metastatic potential in vivo. Melanoma Res 2000; 10: 93–102.

    Article  CAS  Google Scholar 

  16. Jansen AP, Verwiebe EG, Dreckschmidt NE et al. Protein kinase Cepsilon transgenic mice: A unique model for metastatic squamous cell carcinoma. Cancer Res 2001; 61: 808–12.

    PubMed  CAS  Google Scholar 

  17. Sliva D, English D, Lyons D et al. Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB. Biochem Biophys Res Commun 2002; 290: 552–7.

    Article  PubMed  CAS  Google Scholar 

  18. Jackson JL, Young MRI. Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin Exp Metastasis 2002; 19: 409–15.

    Article  PubMed  CAS  Google Scholar 

  19. Young MRI, Liu SW, Meisinger J. Differences in association of the serine/threonine protein phosphatase PP-2A with microtubules of metastatic and nonmetastatic tumor cells. Clin Exp Metastasis 2001; 18: 407–13.

    Article  Google Scholar 

  20. Pavalko FM, Otey CA. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc Soc Exp Biol Med 1994; 205: 282–93.

    PubMed  CAS  Google Scholar 

  21. Clark EA, Brugge JS. Integrins and signal transduction pathways: The Road Taken. Science 1995; 268: 233–9.

    CAS  Google Scholar 

  22. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996; 84: 359–69.

    Article  PubMed  CAS  Google Scholar 

  23. Turner CE. Paxillin and focal adhesion signaling. Nature Cell Biol 2000; 2: E231–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hagel M, George EL, Kim A et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002; 22: 901–15.

    Article  PubMed  CAS  Google Scholar 

  25. Burridge K, Turner CE, Romer LH. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J Cell Biol 1992; 119: 893–903.

    Article  PubMed  CAS  Google Scholar 

  26. Romer LH, Burridge K, Turner CE. Signaling between the extracellular matrix and cytoskeleton: tyrosine phosphorylation and focal adhesion assembly. Cold Spring Harb Symp Quant Biol 1992; 57: 193–202.

    PubMed  CAS  Google Scholar 

  27. Bellis SL, Miller JT, Turner CE. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 1995; 270: 17437–41.

    Article  PubMed  CAS  Google Scholar 

  28. Bellis SL, Perrotta JA, Curtis MS et al. Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochem J 1997; 325: 375–81.

    PubMed  CAS  Google Scholar 

  29. Brown MC, Perrotta JA, Turner CE. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin.Mol Biol Cell 1998; 9: 1803–16.

    PubMed  CAS  Google Scholar 

  30. Han JD, Rubin CS. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. J Biol Chem 1996; 271: 29211–5.

    Article  PubMed  CAS  Google Scholar 

  31. Vilgrain I, Chinn A, Gaillard I et al. Hormonal regulation of focal adhesions in bovine adrenocortical cells: Induction of paxillin dephosphorylation by adrenocorticotropic hormone. Biochem J 1998; 332: 533–40.

    PubMed  CAS  Google Scholar 

  32. Guvakova MA, Surmacz E. The activated insulin-like growth factor I receptor induces depolarization in breast epithelial cells characterized by actin filament disassembly and tyrosine dephosphorylation of FAK, Cas, and paxillin. Exp Cell Res 1999; 251: 244–55.

    Article  PubMed  CAS  Google Scholar 

  33. Hassid A, Yao J, Hung S. NO alters cell shape and motility in aortic smooth muscle cells Via protein tyrosine phosphatase 1B activation. Am J Physiol 1999; 277: H1014–26.

    PubMed  CAS  Google Scholar 

  34. Chang JS, Iwashita S, Lee YH et al. Transformation of rat fibroblasts by phospholipase C-? 1 overexpression is accompanied by tyrosine dephosphorylation of paxillin. FEBS Letters 1999; 460: 161–5.

    Article  PubMed  CAS  Google Scholar 

  35. Petit V, Boyer B, Lentz D et al. Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol 2000; 148: 957–70.

    Article  PubMed  CAS  Google Scholar 

  36. Retta SF, Barry ST, Critchley DR et al. Focal adhesion and stress fiber formation is regulated by tyrosine phosphatase activity. Exp Cell Res 1996; 229: 307–17.

    Article  PubMed  CAS  Google Scholar 

  37. Young MRI, Meunier J, Newby M. Relationships between morphology, dissemination, migration and prostaglandin E2 secretion by cloned variants of Lewis lung carcinoma. Cancer Res 1985; 45: 3918–23.

    PubMed  CAS  Google Scholar 

  38. Favre B, Turowski P, Hemmings BA. Differential inhibition of posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 1997; 272: 13856–63.

    Article  PubMed  CAS  Google Scholar 

  39. Hardie DG, Haystead AJ, Sim ATR. Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol 1997; 201: 469–76.

    Article  Google Scholar 

  40. Daum G, Solca F, Diltz CD et al. A general peptide substrate for protein tyrosine phosphatases. Anal Biochem 1993; 211: 50–4.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Z, Thieme-Sefler AM, Maclean D et al. Substrate specificity of the protein tyrosine phosphatases. Proc Natl Acad Sci USA 1993; 90: 4446–50.

    Article  PubMed  CAS  Google Scholar 

  42. Tenev T, Keilhack H, Tomic S et al. Both SH2 domains are involved in interaction of Shp-1 with epidermal growth factor receptor but cannot confer receptor-directed activity to Shp-1/Shp-2 chimera. J Biol Chem 1997; 272: 5966–73.

    Article  PubMed  CAS  Google Scholar 

  43. Rigacci S, Marzocchini R, Bucciantini M et al. Different in vitro and in vivo activity of low Mr phosphotyrosine protein phosphatase on epidermal growth factor receptor. Biochem Biophys Res Commun 1998; 250: 577–81.

    Article  PubMed  CAS  Google Scholar 

  44. Wang Z, Wang M, Laza JS et al. Identification of epidermal growth factor receptor as a target of cdc25 protein phosphatase. J Biol Chem 2002; 277: 19470–5.

    Article  PubMed  CAS  Google Scholar 

  45. Ouwens DM, Mikkers HMM, Van Der Zon GCM et al. Insulininduced tyrosine dephosphorylation of paxillin and focal adhesion kinases requires active phosphotyrosine phosphatase ID. Biochem J 1996; 318: 609–14.

    PubMed  CAS  Google Scholar 

  46. Arregui CO, Balsamo J, Lilien J. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J Cell Biol 1998; 143: 861–73.

    Article  PubMed  CAS  Google Scholar 

  47. Yu DH, Qu CK, Henegariu O et al. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 1998; 273: 21125–31.

    Article  PubMed  CAS  Google Scholar 

  48. Hassid A, Huang S, Yao J. Role of PTP-1B in aortic smooth muscle cell motility and tyrosine phosphorylation of focal adhesion proteins. Am J Physiol 1999; 277: H192–8.

    PubMed  CAS  Google Scholar 

  49. Manes S, Mira E, Gomez-Mouton C et al. Concerted activity of tyrosine phosphatase Shp-2 and focal adhesion kinase in regulation of cell motility. Mol Cell Biol 1999; 19: 3125–32.

    PubMed  CAS  Google Scholar 

  50. Inagaki K, Noguchi T, Matozaki T et al. Roles for the protein tyrosine phosphatase Shp-2 in cytoskeletal organization, cell adhesion and cell migration revealed by overexpression of a dominant negative mutant. Oncogene 2000; 19: 75–84.

    Article  PubMed  CAS  Google Scholar 

  51. Buckley DA, Cheng A, Kiley PA et al. Regulation of insulin-like growth factor type I (IGF-1) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol 2002; 22: 1998–2010.

    Article  PubMed  CAS  Google Scholar 

  52. Sorenson CM, Sheibani N. Altered regulation of Shp-2 and PTP-1B tyrosine phosphatases in cystic kidneys from bcl-2–/–mice. Am J Physiol Renal Physiol 2002; 282: F442–50.

    PubMed  CAS  Google Scholar 

  53. Neel BJ, Tonks NK. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 1997; 9: 193–204.

    Article  PubMed  CAS  Google Scholar 

  54. Angers-Loustau A, Cote JF, Tremblay ML. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem Cell Biol 1999; 77: 493–505.

    Article  PubMed  CAS  Google Scholar 

  55. Rocchi S, Gaillard I, van Obberghen E et al. Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMPdependent protein kinase. Biochem J 2000; 352: 483–90.

    Article  PubMed  CAS  Google Scholar 

  56. Garton AJ, Tonks NK. PTP-PEST: A protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J 1994; 13: 3763–71.

    PubMed  CAS  Google Scholar 

  57. Richardson A, Malik RK, Hildebrand JD et al. Inhibition of cell spreading by expression of the c-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of src or catalytically inactive FAK: A role for paxillin tyrosine phosphorylation. Mol Cell Biol 1997; 17: 6906–14.

    PubMed  CAS  Google Scholar 

  58. Schaller MD, Hildebrand JD, Parsons JT. Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of src kinases. Mol Biol Cell 1999; 10: 3489–505.

    PubMed  CAS  Google Scholar 

  59. Thomas JW, Cooley MA, Broome JM et al. The role of focal adhesion kinase binding in the regulation of tyrosine phosphorylation of paxillin. J Biol Chem 1999; 274: 36684–92.

    Article  PubMed  CAS  Google Scholar 

  60. Sicheri F, Kuriyan J. Structures of src-family tyrosine kinases. Curr Opin Struct Biol 1997; 7: 777–85.

    Article  PubMed  CAS  Google Scholar 

  61. Thomas SM, Brugge JS. Cellular functions regulated by src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513–609.

    Article  PubMed  CAS  Google Scholar 

  62. Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochem and Biophys Acta 2001; 1540: 1–21.

    Article  CAS  Google Scholar 

  63. Zheng, XM, Wang Y, Pallen CJ. Cell transformation and activation of pp60c-src by overexpression of protein tyrosine phosphatase. Nature 1992; 359: 336–9.

    Article  PubMed  CAS  Google Scholar 

  64. Harder KW, Moller NP, Peacock JW et al. Protein-tyrosine phosphatase alpha regulates src family kinases and alters cell-substratum adhesion. J Biol Chem 1998; 273: 31890–900.

    Article  PubMed  CAS  Google Scholar 

  65. Oh ES, Gu H, Saxton TM et al. Regulation of early events in integrin signaling by protein tyrosine phosphatase Shp-2. Mol Cell Biol 1999; 19: 3205–15.

    PubMed  CAS  Google Scholar 

  66. Ponniah S, Wang DZ, Lim KL et al. Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases src and fyn. Curr Biol 1999; 9: 535–8.

    Article  PubMed  CAS  Google Scholar 

  67. Su J, Maranjan M, Sap J. Receptor protein tyrosine phosphatase alpha activates src-family kinases and controls integrin-mediated responses in fibroblasts. Curr Biol 1999; 9: 505–11.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng A, Bal GS, Kennedy BP et al. Attenuation of adhesiondependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J Biol Chem 2001; 276: 25848–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rita I. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, J.L., Young, M.R.I. Protein phosphatase-2A regulates protein tyrosine phosphatase activity in Lewis lung carcinoma tumor variants. Clin Exp Metastasis 20, 357–364 (2003). https://doi.org/10.1023/A:1024012000009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024012000009

Navigation