Skip to main content
Log in

Singularity analysis of anisotropic multimaterial corners

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Singular stress states induced at the tip of linear elastic multimaterial corners are characterized in terms of the order of stress singularities and angular variation of stresses and displacements. Linear elastic materials of an arbitrary nature are considered, namely anisotropic, orthotropic, transversely isotropic, isotropic, etc. Thus, in terms of Stroh formalism of anisotropic elasticity, the scope of the present work includes mathematically non-degenerate and degenerate materials. Multimaterial corners composed of materials of different nature are typically present at any metal-composite, or composite-composite adhesive joint. Several works are available in the literature dealing with a singularity analysis of multimaterial corners but involving (in the vast majority) only materials of the same nature (e.g., either isotropic or orthotropic). Although many different corner configurations have been studied in literature, with almost any kind of boundary conditions, there is an obvious lack of a general procedure for the singularity characterization of multimaterial corners without any limitation in the nature of the materials. With the procedure developed here, and implemented in a computer code, multimaterial corners, with no limitation in the nature of the materials and any homogeneous orthogonal boundary conditions, could be analyzed. As a particular case, stress singularity orders in corners involving extraordinary degenerate materials are, to the authors’ knowledge, presented for the first time. The present work is based on an original idea by Ting (1997) in which an efficient procedure for a singularity analysis of anisotropic non-degenerate multimaterial corners is introduced by means of the use of a transfer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogy, D.B. (1971). Two edge-bonded elastic wedges of different materials and wedges angles under surface tractions.Journal of Applied Mechanics 38, 377–386.

    Google Scholar 

  • Bogy, D.B. and Wang, K.C. (1971). Stress singularities at interface corners in bonded dissimilar isotropic elastic materials.International Journal of Solids and Structures 7, 993–1005.

    Article  MATH  Google Scholar 

  • Buffler, H. (1971). Theory of elasticity of a multilayered medium.Journal of Elasticity 1, 125–143.

    Article  Google Scholar 

  • Chen, W.H. and Huang, T.F. (1997). Stress singularity of edge delamination in angle-ply and cross-ply laminates.Journal of Applied Mechanics 64, 525–531.

    Article  MATH  Google Scholar 

  • Chen, D.H and Nisitani, H. (1993). Singular stress field near the corner of jointed dissimilar materials.Journal of Applied Mechanics 60, 607–613.

    Article  MATH  ADS  Google Scholar 

  • Chen, H.P. (1998). Stress singularities in anisotropic multimaterial wedges and junctions.International Journal of Solids and Structures 35(11), 1057–1073.

    Article  MATH  Google Scholar 

  • Defourny, M. (1988). Singular point theory in Laplace field.Boundary Elements X, Vol. 1 (Edited by C.A. Brebia) Springer-Verlag, Berlin, pp. 165–180.

    Google Scholar 

  • Delale, F. (1984). Stress singularities in bonded anisotropic materials.International Journal of Solids and Structures 20(1), 31–40.

    Article  MATH  Google Scholar 

  • Dempsey, J.P. and Sinclair, G.B. (1979) On the stress singularities in the plane elasticity of the composite wedge.Journal of Elasticity 9(4), 373–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Dempsey, J.P. and Sinclair, G.B. (1981). On the singular behaviour of a bi-material wedge.Journal of Elasticity 11(3), 317–327.

    Article  MATH  MathSciNet  Google Scholar 

  • Dempsey, J.P. (1995). Power-logarithmic stress singularities at bimaterial corners and interface cracks.Journal of Adhesion Science and Technology 9, 253–265.

    Article  CAS  Google Scholar 

  • Desmorat, R. (1996). Champs singuliers dans-un bi-matériau en élasticité plane anisotrope",C.R. Acad. Sci. Paris, t.322, Série IIb, pp. 355–362.

    MATH  CAS  Google Scholar 

  • Eshelby, J.D., Read, W.T. and Shockley, W. (1953). Anisotropic elasticity with applications to dislocation theory.Acta Metallurgica 1, 251–259.

    Article  Google Scholar 

  • Hein, V.L. and Erdogan, F. (1971). Stress singularities in a two-material wedge.International Journal of Fracture Mechanics 7, 317–330.

    Article  Google Scholar 

  • Hwu, C. and Ting, T.C.T. (1989). Two-dimensional problems of the anisotropic elastic solid with an elliptic inclusion.Quarterly Journal of Mechanics and Applied Mathematics 42, 553–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Lekhnitskii, S.G. (1938). Some cases of the elastic equilibrium of a homogeneous cylinder with arbitrary anisotropy.Applied Mathematics and Mechanics (in Russian)2, 345–367.

    Google Scholar 

  • Lin, Y.Y. and Sung, J.C. (1998). Stress singularities at the apex of a dissimilar anisotropic wedge.Journal of Applied Mechanics 65, 454–463.

    Article  Google Scholar 

  • Mantič, V., París, F. and Berger, J. (2002).Singularities in 2D anisotropic potential problems in multi-material corners. Real variable approach, submitted for publication.

  • Mantič, V., París, F. and Cañas, J. (1997). Stress singularities in 2D orthotropic corners.International Journal of Fracture 83, 67–90.

    Article  Google Scholar 

  • Muller, D.E. (1956). A method for solving algebraic equations using an automatic computer.Mathematical Tables and Computations 10, 208–215.

    Article  MATH  Google Scholar 

  • Pageau, S.S. Joseph, P.F. and Biggers, S.B. Jr., (1994). The order of stress singularities for bonded and disbonded three-material junctions.International Journal of Solids and Structures 31, 2979–2997.

    Article  MATH  Google Scholar 

  • Pageau, S.S., Joseph, P.F. and Biggers, S.B. Jr., (1995a). Finite element evaluation of free-edge singular stress fields in anisotropic materials.International Journal of Numerical Methods in Engineering 38, 2225–2239.

    Article  MATH  Google Scholar 

  • Pageau, S.S., Joseph, P.F. and Biggers, S.B. Jr., (1995b). Singular antiplane stress fields for bonded and disbonded three-material junctions.Engineering Fracture Mechanics 52(5), 821–832.

    Article  Google Scholar 

  • Pageau, S.S. and Biggers, S.B. Jr., (1996). A finite element approach to three-dimensional singular stress states in anisotropic multimaterial wedges and junctions.International Journal of Solids and Structures 33, 33–47.

    Article  MATH  Google Scholar 

  • Poonsawat, P., Wijeyewickrema, A.C. and Karasudhi, P. (1998). Singular stress fields of an anisotropic composite wedge with a frictional interface.ASCE 12th Engineering Mechanics Conference, La Jolla, San Diego, CA, pp. 578–581.

  • Poonsawat, P., Wijeyewickrema, A.C. and Karasudhi, P., (2001). Singular stress fields of angle-ply and monoclinic bimaterial wedges.International Journal of Solids and Structures 38, 91–113.

    Article  MATH  Google Scholar 

  • Seweryn, A. (1994). Brittle fracture criterion for structures with sharp notches.Engineering Fracture Mechanics 47(5), 673–681.

    Article  Google Scholar 

  • Sinclair, G.B. (1999). Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates in extension.Journal of Applied Mechanics 66, 556–560.

    Article  MathSciNet  Google Scholar 

  • Stroh, A.N. (1958). Dislocations and cracks in anisotropic elasticity.Philosophical Magazines 3, 625–646.

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  • Stroh, A.N. (1962). Steady state problems in anisotropic elasticity.Journal of Mathematics and Physics 41, 77–103.

    MATH  MathSciNet  Google Scholar 

  • Tanuma, K. (1996). Surface-impedance tensors of transversely isotropic elastic materials.Quarterly Journal of Mechanics and Applied Mathematics 49(1), 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Ting, T.C.T. and Hwu, C. (1988). Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N.International Journal of Solids and Structures 24, 65–76.

    Article  MATH  Google Scholar 

  • Ting, T.C.T. (1996a).Anisotropic Elasticity: Theory and Applications, Oxford University Press.

  • Ting, T.C.T. (1996b). Existence of an extraordinary degenerate matrix N for anisotropic elastic materials.Quarterly Journal of Mechanics and Applied Mathematics 49(3), 405–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Ting, T.C.T. (1997). Stress singularities at the tip of interfaces in polycrystals.Damage and Failure of Interfaces (Edited by Rossmanith). Balkema, Rotterdam, pp. 75–82.

    Google Scholar 

  • Ting, T.C.T. (1999). A modified Lekhnitskii formalism à la Stroh for anisotropic elasticity and classifications of the 6 × 6 matrix N.Proc. R. Soc. London A455, 69–89.

    ADS  MathSciNet  Google Scholar 

  • Vasilopoulos, D. (1988). On the determination of higher order terms of singular elastic stress fields near corners.Numerische Mathematik 53, 51–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y.M. and Ting, T.C.T. (1997). The Stroh formalism for anisotropic materials that possess an al most extraordinary degenerate matrix N.International Journal of Solids and Structures 34(4), 65–76.

    Article  MathSciNet  Google Scholar 

  • Wang, S.S. (1984). Edge delamination in angle-ply composite laminates.AIAA Journal 22, 256–264.

    Article  MATH  Google Scholar 

  • Wolfram, S. (1991).Mathematica, A system for doing mathematics by computer. Addison-Wesley, Redwood City.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, A., Mantič, V. & París, F. Singularity analysis of anisotropic multimaterial corners. Int J Fract 119, 1–23 (2003). https://doi.org/10.1023/A:1023937819943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023937819943

Key words

Navigation