Skip to main content
Log in

Kinetics of Aperiodic Cascade Boosters: Speed of Operation and Safety

  • Published:
Atomic Energy Aims and scope

Abstract

The results of Monte-Carlo calculations of simple spherically symmetric systems, simulating an aperiodic booster, are presented. The purpose of the calculations is to give a clear demonsration of the specific features of the kinetics of cascade reactor systems and the possibilities which the application of the cascade principle in an aperiodic booster adds to increasing safety and improving the time parameters of the pulses. Another goal is to determine the materials for the moderator which are best from the standpoint of optimizing the parameters of the booster. It is shown that for the same total number of fissions the neutron pulses in a cascade booster are generated under conditions of much greater subcriticality and are much shorter in duration than for a single-section booster. The best pulse parameters are obtained in cascade boosters with tungsten, lead, and molybdenum neutron moderators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Borst, “The convergatron, a neutron amplifier,” Phys. Rev., 107, No.3, 905–906 (1957).

    Google Scholar 

  2. B. G. Dubovskii, “Sectionalized reactor systems,” At. Énerg., 7, No.5, 456–457 (1959).

    Google Scholar 

  3. G. V. Kiselev, “Possibilities of improving the characteristics of electronuclear setups,” At. Énerg., 91, No.1, 54–63 (2001).

    Google Scholar 

  4. V. F. Kolesov and A. A. Malinkin, “Two-cascade neutron multiplier,” Inventor' s Certificate No 786619; Byull. Izobret., No. 30, 240 (1991) (date of priority, July 17, 1979).

    Google Scholar 

  5. V. F. Kolesov and A. A. Malinkin, “Kinetics of a two-section booster-reactor with assymetric neutron coupling of the sections,” Vopr. At. Nauk. Tekh., Ser. Fiz. Yad. Reakt., No. 4, 10–23 (1991).

    Google Scholar 

  6. A. I. Pavlovskii, A. A. Malinkin, and V. F. Kolesov, “The Kaskad (BR-K) two-section booster-reactor,” Vopr. At. Nauk. Tekh., Ser. Fiz. Yad. Reakt., No. 3, 3–11 (1992).

    Google Scholar 

  7. V. S. Bosamykin, A. S. Koshelev, A. I. Gerasimov, et al., “High-intensity neutron source based on the LIU-30 highpower electron accelerator and the BR-1 pulsed nuclear reactor,” in: Advanced Pulsed Neutron Sources: Physics of/at Advanced Pulsed Nuetron Sources, PANS-2, June 14–17, 1994, JINR, Dubna (1995), pp. 114–121.

    Google Scholar 

  8. P. Griggin, J. Miller, G. Harms, et al., “Design trade-off study for a large volume short pulse neutron assembly,” in: Physics, Safety, and Applications of Pulse Reactors. Proceedings of International Topical Meeting on Physics, Safety, and Applications of Pulse Reactors, Washington, D.C., November 13–17, 1994, pp. 292–299.

  9. V. F. Kolesov and A. A. Malinkin, “The two-section pulsed reactor with assymmetrical neutron coupling between sections,” in: Proceedings of the International Workshop on Pulsed Advanced Neutron Sources, Dubna, June 25–27, 1991; Preprint No. DZ-92-76, JINR, Dubna (1992), pp. 6–15.

    Google Scholar 

  10. T. Sanford, I. Lorence, J. Halbleib, et al, “Photoneutron procution using bremsstrahlung from the 14 TW pulsed-power HERMES III electron accelerator,” Nucl. Sci. Eng., 114, No.3, 190–213 (1993).

    Google Scholar 

  11. V. F. Kolesov and B. Ya. Guzhovskii, “On the possibility of increasing the efficiency of an electronuclear transmutation setup by switching to a multisection blanket structure,” Preprint No. 2793, VNIIÉF (1993).

  12. Yu. K. Kochubei, A. K. Zhitnik, E. V. Artem' eva, et al., “S-95 computer program. Monte-Carlo simulation of combined neutron and γ-ray transport,” Vopr. At. Nauk. Tekh. Ser. Matemat. Modelir. Fiz. Prots., No. 2, 49–52 (2000).

    Google Scholar 

  13. V. F. Kolesov and V. Kh. Khoruzhii, “Neutron characteristics of models of a cascade two-section blanket,” At. Énerg., 88, No.5, 330–337 (2000).

    Google Scholar 

  14. V. F. Kolesov, N. V. Zav' yanov, I. A. Ivanin, et al., “Experimental investigation of models of a cascade blanket of an electronuclear setup,” At. Énerg., 92, No.1, 42–50 (2002).

    Google Scholar 

  15. S. S. Abalin, P. N. Alexeev, L. I. Menshikov, et al., “Conception of electron beam-driven molten-salt ultimate safety reactor,” in: International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas, NV (1994), Woodbury, NY (1995), pp. 527–534.

  16. P. N. Alekseev, V. V. Ignat' ev, O. E. Kolyaskin, et al., “Enhanced-safety cascade subcritical reactor,” At. Énerg., 79, No.5, 327–337 (1995).

    Google Scholar 

  17. A. S. Gerasimov and G. V. Kiselev, “Scientific-technical problems of developing an electronuclear setups for transmuting of long-lived radioactive wastes and simultaneously producing energy (Russian experience),” Fiz. Élemen. Chast. At. Yad., 32], No. 1, 143–188 (2001).

    Google Scholar 

  18. A. P. Barzilov, A. V. Gulevich, O. F. Kukharchuk, et al., “Subcritical recator system with cascade neutron multiplication,” Izv. Vyssh. Uchebn. Zaved., Yad. Énerget., No. 2, 59–66 (1997).

    Google Scholar 

  19. A. M. Voinov, M. A. Voinov, S. V. Vorontsov, et al., “Computational-theoretical design and construction of a physical model of a two-cascade blanket for an electronuclear reactor,” in: 2nd Scientific Seminar in Honor of V. N. Sarantsev, Dubna, September 23–24, 1997, D9-98-153, Dubna (1998), pp. 69–76.

  20. V. S. Barashenkov and I. A. Shelaev, “Electronuclear energy boosters with low-energy proton beams,” At. Énerg., 85, No.5, 409–411 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, V.F., Khoruzhii, V.K. Kinetics of Aperiodic Cascade Boosters: Speed of Operation and Safety. Atomic Energy 94, 61–70 (2003). https://doi.org/10.1023/A:1023700818483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023700818483

Keywords

Navigation