Skip to main content
Log in

Dynamical Behavior of the Multibondic and Multicanonic Algorithm In The 3D q-State Potts Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamical behavior of the recently proposed multibondic cluster Monte Carlo algorithm in applications to the three-dimensional q-state Potts models with q= 3, 4, and 5 in the vicinity of their first-order phase transition points. For comparison we also report simulations with the standard multicanonical algorithm. Similar to the findings in two dimensions, we show that for the multibondic cluster algorithm the dependence of the autocorrelation time τ on the system size Vis well described by the power law τ ∝ V , and that the dynamical exponent ∝ is consistent with the optimal random walk estimate ∝ = 1. For the multicanonical simulations we obtain, as expected, a larger value of ∝ ≍ 1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 5b, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976), p. 1; and in Monte Carlo Methods in Statistical Physics, K. Binder, ed. (Springer, Berlin, 1979), p. 1.

    Google Scholar 

  2. A. D. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms, Cours de Troisíème Cycle de la Physique en Suisse Romande, Lausanne, 1989; and Bosonic Algorithms, in Quantum Fields on the Computer, M. Creutz, ed. (World Scientific, Singapore, 1992), p. 211.

    Google Scholar 

  3. W. Janke, Monte Carlo Simulations of Spin Systems, in Computational Physics: Selected Methods—Simple Exercises—Serious Applications, K. H. Hoffmann and M. Schreiber, eds. (Springer, Berlin, 1996), p. 10.

    Google Scholar 

  4. W. Janke, Nonlocal Monte Carlo Algorithms for Statistical Physics Applications, Mainz preprint (April 1997), to appear in Monte Carlo Methods, Proceedings of the IMACS Workshop, Brussels, April 1997.

  5. H. J. Herrmann, W. Janke, and F. Karsch (eds.), Dynamics of First Order Phase Transitions(World Scientific, Singapore, 1992); K. Binder, Rep. Prog. Phys. 50:783 (1987); J. D. Gunton, M. S. Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 269.

    Google Scholar 

  6. A. Billoire, Nucl. Phys. B (Proc. Suppl.) 42:21 (1995); W. Janke, in Computer Simulations in Condensed Matter Physics VII, D. P. Landau, K. K. Mon, and H. B. Schüttler, eds. (Springer, Berlin, 1994), p. 29.

    Google Scholar 

  7. B. A. Berg and T. Neuhaus, Phys. Lett. B 267:249 (1991).

    Google Scholar 

  8. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68:9 (1992).

    Google Scholar 

  9. For reviews and a discussion of related approaches, see B. A. Berg, in Dynamics of First Order Phase Transitions(World Scientific, Singapore, 1992) [ref. 5], p. 311; and in Multiscale Phenomena and Their Simulation, F. Karsch, B. Monien, and H. Satz, eds. (World Scientific, Singapore, 1997), p. 137.

  10. W. Janke, in Physics Computing '92, R. A. de Groot and J. Nadrchal, eds. (World Scientific, Singapore, 1993), p. 351.

    Google Scholar 

  11. W. Janke, B. A. Berg, and M. Katoot, Nucl. Phys. B 382:649 (1992).

    Google Scholar 

  12. W. Janke and S. Kappler, Phys. Rev. Lett. 74:212 (1995).

    Google Scholar 

  13. R. B. Potts, Proc. Camb. Phil. Soc. 48:106 (1952).

    Google Scholar 

  14. F.Y. Wu, Rev. Mod. Phys. 54:235 (1982); 55:315(E) (1983).

    Google Scholar 

  15. W. Janke and R. Villanova, Nucl. Phys. B 489:679 (1997); and references to earlier work therein.

    Google Scholar 

  16. P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Japan 26(Suppl.):11 (1969); C. M. Fortuin and P. W. Kasteleyn, Physica 57:536 (1972); C. M. Fortuin, Physica 58:393 (1972); 59:545 (1972).

    Google Scholar 

  17. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  18. R. G. Miller, Biometrika 61:1 (1974); B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans(SIAM, Philadelphia, 1982).

    Google Scholar 

  19. W. Janke and T. Sauer, J. Stat. Phys. 78:759 (1995).

    Google Scholar 

  20. C. Borgs and W. Janke, Phys. Rev. Lett. 68:1738 (1992); W. Janke, Phys. Rev. B 47:14757 (1993).

    Google Scholar 

  21. K. Binder, Phys. Rev. A 25:1699 (1982).

    Google Scholar 

  22. K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. B 91:113 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, M.S., Janke, W. & Kappler, S. Dynamical Behavior of the Multibondic and Multicanonic Algorithm In The 3D q-State Potts Model. Journal of Statistical Physics 90, 1277–1293 (1998). https://doi.org/10.1023/A:1023283412473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023283412473

Navigation