Skip to main content
Log in

Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel composite materials have been developed as alternative forms to immobilise nuclear solid waste. These composites are made of a lead-containing glass matrix, into which particles of lanthanum zirconate pyrochlore are embedded in 10 and 30 vol% concentrations. The fabrication involves powder mixing, pressing and pressureless sintering. The processing conditions were investigated with the aim of achieving the highest possible density. The best composites obtained showed a good distribution of the lanthanum zirconate particles in the glass matrix, strong bonding of the particles to the matrix and relatively low porosity (<10%). The best sintering temperature was 600°C for the 10 vol% composite and 650°C for 30 vol%. Sintering was carried out for an hour and a heating rate of 10°C · min−1 was shown to be superior to a heating rate of 2°C · min−1. At the relatively low sintering temperatures used, the pyrochlore crystalline structure of lanthanum zirconate, relevant for containment of radioactive nuclei, was stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. De, B. Luckscheiter, W. Lutze, G. Malow and E. Schiewer, Ceramic Bull. 55 (1976) 500.

    Google Scholar 

  2. W. J. Weber, R. P. Turcotte and F. P. Roberts, Rad Waste Man. 2 (1982) 295.

    Google Scholar 

  3. W. J. Weber, R. P. Turcotte, L. R. Bunnell, F. P. Roberts and J. H. Westsik, Jr., in “Radiation Effects in Vitreous and Devitrified SimulatedWaste Glass”, edited by T. D. Chikalla and J. E. Mendel, CONF-790420 (National Technical Information Service, Springfield, VA, 1979) p. 294.

    Google Scholar 

  4. S. X. Wang, B. D. Begg, L. M. Wang, R. C. Ewing, W. J. Weber and K. V. G. Kutty, J. Mater. Res. 14 (1999) 4470.

    Google Scholar 

  5. B. Burakov, E. Anderson, M. Yagovkina, M. Zamoryanskaya and E. Nikolaeva, “Behavior of 238Pu-Doped Ceramics Based on Cubic Zirconia and Pyrochlore Under Radiation Damage,” International Conf. ACTINIDES-2001, Hayama, Japan.

  6. S. Yamazaki, T. Yamashita, T. Matsui and T. NAGASAKI, J. Nucl. Mater. 294 (2001) 183.

    Google Scholar 

  7. W. L. Gong, W. Lutze and R. C. Ewing, ibid. 277 (2000) 239.

    Google Scholar 

  8. K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. Mcclellan and T. Hartmann, Science 289 (2000) 748.

    Google Scholar 

  9. S. X. Wang, L. M. Wang, R. C. Ewing, G. S. Was and G. R. Lumpkin, Nucl. Instrum. Methods Phys. Res. B 148 (1999) 704.

    Google Scholar 

  10. W. J. Weber, J. W. Wald and H. Matzke, Mater. Lett. 3 (1985) 173.

    Google Scholar 

  11. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hobbs, C. Kinoshita, HJ. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance and S. J. Zinkle, J. Mater. Res. 13 (1998) 1434.

    Google Scholar 

  12. W. L. Gong, W. Lutze and R. C. Ewing, J. Nucl. Mater. 278 (2000) 73.

    Google Scholar 

  13. D. W. Esh, K. M. Goff, K. T. Hirsche, T. J. Battisiti, M. F. Simpson, S. G. Johnson and K. J. Bateman, Mater. Res. Soc. Symp. Proc. 556 (1999) 107.

    Google Scholar 

  14. J. Lian, X. T. Zu, K. V. G. Kutty, J. Chen, L. M. Wang and R. C. Ewing, Phys. Rev. B 66 0541XX-1 (2002) in press.

  15. L. Minervini, R. W. Grimes and K. E. Sickafus, J. Amer. Ceram. Soc. 83 (2000) 1873.

    Google Scholar 

  16. M. Pirzada, R. W. Grimes, L. Minervini, J. F. Maguire and K. E. Sickafus, Solid State Ionics 140 (2001) 201.

    Google Scholar 

  17. A. R. Boccaccini, M. Buecker, P. A. Trusty, M. Romero and I. M. Rincon, Glass Technol. 38(4) (1997) 128.

    Google Scholar 

  18. J. Nair, P. Nair, G. B. M. Doesburg J. G. van Ommen, J. R. H. Ross, A. J. Burggraaf and F. Mizukami, J. Amer. Ceram. Soc. 82(8) (1999) 2066.

    Google Scholar 

  19. R. Vassen, ibid. 83(8), (2000) 2023.

    Google Scholar 

  20. W. J. Weber and R. C. Ewing, Science 289 (2000) 2052.

    Google Scholar 

  21. G. W. Scherer, J. Amer. Ceram. Soc. 60 (1977) 239.

    Google Scholar 

  22. J. M. Hermans, J. G. J. Peelen and R. Bei, Ceram. Bull. 80(3) (2001) 51.

    Google Scholar 

  23. G. W. Scherer, ibid. 70 (1991) 1059.

    Google Scholar 

  24. A. R. Boccaccini and P. A. Trusty, J. Mater. Sci. Lett. 15 (1996) 60.

    Google Scholar 

  25. A. R. Boccaccini, Ceramica Acta 8(1) (1996) 5.

    Google Scholar 

  26. I. W. Donald, B. L. Metcalfe and R. N. J. Taylor, J. Mater. Sci. 32 (1997) 5851.

    Google Scholar 

  27. W. Lutze and R. C. Ewing (eds.), “RadioactiveWaste Forms for the Future” (North Holland, Amsterdam, 1988).

    Google Scholar 

  28. E. M. Rabinovich, J. Mater. Sci. 11 (1976) 925.

    Google Scholar 

  29. G. J. McCarthy and M. T. Davidson, Ceram. Bull. 55 (1976) 190.

    Google Scholar 

  30. S. S. Kim, J. G. Lee, I. K. Choi, G. H. Lee and K. S. Chun, Radiochim. Acta 79 (1997) 199.

    Google Scholar 

  31. I. Hayakawa and H. Kamizono, Mater. Res. Soc. Symp. 257 (1992) 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digeos, A.A., Valdez, J.A., Sickafus, K.E. et al. Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. Journal of Materials Science 38, 1597–1604 (2003). https://doi.org/10.1023/A:1023242702644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023242702644

Keywords

Navigation