Skip to main content
Log in

Solutions to the Boltzmann Equation in the Boussinesq Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a gas in a horizontal slab in which the top and bottom walls are kept at different temperatures. The system is described by the Boltzmann equation (BE) with Maxwellian boundary conditions specifying the wall temperatures. We study the behavior of the system when the Knudsen number ∈ is small and the temperature difference between the walls as well as the velocity field is of order ∈, while the gravitational force is of order ∈2. We prove that there exists a solution to the BE for EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaerbmv% 3yPrwyGm0BUn3BSvgaiuaacaWF1oWaaeWaaeaacaaIWaGaaiilamaa% naaabaGaamiDaaaaaiaawIcacaGLPaaaaaa!4184! which is near a global Maxwellian, and whose moments are close, up to order ∈2, to the density, velocity and temperature obtained from the smooth solution of the Oberbeck–Boussinesq equations assumed to exist for EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamrr1n% gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hzIq4aa0aa% aeaacaWG0baaaaaa!4322! .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. G. Drazin and W. H. Reid, Hydrodynamic Instability(Cambridge Univ. Press, Cambridge, 1981).

    Google Scholar 

  2. R. Esposito and R. Marra, Incompressible fluids on three levels: hydrodynamic, kinetic, microscopic, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics(RIMS, Kyoto, 1993).

    Google Scholar 

  3. J. M. Mihaljan, A rigourous exposition of the Boussinesq approximation applicable to a thin layer of fluid, Astrophys. J., 136:1126-1133 (1962).

    Google Scholar 

  4. D. D. Joseph, Stability of Fluid Motions(Springer-Verlag, Berlin, 1976).

    Google Scholar 

  5. R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. on Pure and Applied Math. 33:651-666 (1980).

    Google Scholar 

  6. A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Commun. Pure and Applied Math. 42:1189-1214 (1989).

    Google Scholar 

  7. R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic Limit of the Stationary Boltzmann Equation in a Slab, Commun. Math. Phys. 160:49-80 (1994).

    Google Scholar 

  8. R. Esposito, J. L. Lebowitz, and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, J. Stat. Phys. 78:389-412 (1995).

    Google Scholar 

  9. S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a flow past an obstacle, I. Existence, Arc. Rat. Mech. Anal. 84:249-291 (1983).

    Google Scholar 

  10. C. Bardos, R. Caflisch, and B. Nicolaenko, Thermal layer Solutions of the Boltzmann Equation, Random Fields: Rigorous Results in Statistical Physics. Koszeg (1984) J. Fritz, A. Jaffe and D. Szasz, eds. (Birkhauser, Boston, 1985).

    Google Scholar 

  11. C. Carcignani, R. Esposito, and R. Marra, The Milne problem with a force term, preprint (1996).

  12. J. Boussinesq, Théorie analytique de la chaleur(Gauthier-Villars, Paris, 1903).

    Google Scholar 

  13. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases(Springer-Verlag, New York, 1994)

    Google Scholar 

  14. F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation, Arch. Rat. Mech. Anal. 104:81-96 (1988).

    Google Scholar 

  15. N. B. Maslova, Nonlinear evolution equations: kinetic approach(World Scientific, 1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, R., Marra, R. & Lebowitz, J.L. Solutions to the Boltzmann Equation in the Boussinesq Regime. Journal of Statistical Physics 90, 1129–1178 (1998). https://doi.org/10.1023/A:1023223226585

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023223226585

Navigation