Skip to main content
Log in

Critical Exponents of the Diluted Ising Model between Dimensions 2 and 4

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Within the massive field-theoretic renormalization-group approach the expressions for the β and γ functions of the anisotropic mn-vector model are obtained for general space dimension d in three-loop approximation. Resumming corresponding asymptotic series, critical exponents for the case of the weakly diluted quenched Ising model (m = 1, n = 0), as well as estimates for the marginal order parameter component number m c of the weakly diluted quenched m-vector model, are calculated as functions of d in the region 2 ≤ d < 4. Conclusions concerning the effectiveness of different resummation techniques are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. B. Mandelbrot, Fractals: Form, Chance and Dimension. Freeman, San Francisco, CA, 1977.

    Google Scholar 

  2. Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Lett. 45(11):855-858 (1980).

    Google Scholar 

  3. Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick, Phys. Rev. Lett. 47(25):1771-1774 (1981).

    Google Scholar 

  4. B. Bonnier, Y. Leroyer, and C. Meyers, Phys. Rev. B 37(10):5205-5210 (1988).

    Google Scholar 

  5. W. Jeżewski and P. Tomczak, Physica A 171:209-222 (1991).

    Google Scholar 

  6. W. Jeżewski and P. Tomczak, Phys. Lett. A 157(8–9):507-512 (1991).

    Google Scholar 

  7. W. Jeżewski, Physica A 210:73-86.

  8. B. Hu, Phys. Rev. B. 33(9):6503-6504 (1986).

    Google Scholar 

  9. Y. Wu and B. Hu, Phys. Rev. A. 35(3):1404-1411 (1987).

    Google Scholar 

  10. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28(4):240-243 (1972).

    Google Scholar 

  11. K. G. Le Guillou and M. E. Fisher, Phys. Rev. Lett. 28(4):240-243 (1972).

    Google Scholar 

  12. S. L. Katz, M. Droz, and J. D. Gunton, Phys. Rev. B. 15(3):1597-1599 (1977).

    Google Scholar 

  13. B. Bonnier and M. Hontebeurie, J. Phys. I (Paris) 1:331-338 (1991).

    Google Scholar 

  14. M. A. Novotny M. A., Europhys. Lett. 17(4):291-302 (1992).

    Google Scholar 

  15. M. A. Novotny, Phys. Rev. B 46(5):2939-2950 (1992).

    Google Scholar 

  16. A. E. Filippov and A. V. Radievskii, Zh. Eksp. Teor. Fiz. 102(6):1899-1920 (1992).

    Google Scholar 

  17. A. E. Filippov, Teor. i Matt. Fiz. 91(2):320-333 (1992).

    Google Scholar 

  18. A. E. Filippov and A. V. Radievskii, Pism. V Zh. Eksp. Teor. Fiz. 56(2):87-92 (1992).

    Google Scholar 

  19. S. A. Breus and A. E. Filippov, Physica A 192(1):486-515 (1993).

    Google Scholar 

  20. G. Parisi, in Proceedings of the Cargése Summer School, unpublished.

  21. G. Parisi, J. Stat. Phys. 23(1):49-82 (1980).

    Google Scholar 

  22. Yu. Holovatch, Theor. Math. Phys. 96(3):482-495 (1993).

    Google Scholar 

  23. Yu. Holovatch and T. Krokhmal's'kii, J. Math. Phys. 35(8):3866-3880 (1994).

    Google Scholar 

  24. M. E. Fisher and D.S. Gaunt, Phys. Rev. A 133(1):224-239 (1964).

    Google Scholar 

  25. G. A. Baker, Jr. and L. P. Benofy, J. Stat. Phys. 29(4):699-716 (1982).

    Google Scholar 

  26. Here so called Fisher renormalization (ref. 27) holds. It states that the critical exponents of an annealed system are determined by those of the corresponding pure one.

  27. M. E. Fisher, Phys. Rev. 176(1):257-272 (1968).

    Google Scholar 

  28. A. B. Harris, J. Phys. C 7:1671-1692 (1974).

    Google Scholar 

  29. R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Joshizawa, Phys. Rev. B 27(11):6747-6753 (1983).

    Google Scholar 

  30. P. W. Mitchell, R. A. Cowley, H. Yoshizawa, P. Böni, Y. J. Uemura, and R. J. Birgeneau, Phys. Rev. B 34(7):4719-4725 (1986).

    Google Scholar 

  31. T. R. Thurston, C. J. Peters, and R. J. Birgeneau, Phys. Rev. B 37(16):9559-9563 (1988).

    Google Scholar 

  32. T. C. Lubensky, Phys. Rev. B 11(9):3573-3580 (1975).

    Google Scholar 

  33. D. E. Khmelnitskii, Zh. Eksp. Teor. Fiz. 68(5):1960-1968 (1975).

    Google Scholar 

  34. G. Grinstein and A. Luther, Phys. Rev. B 13(3):1329-1343 (1976).

    Google Scholar 

  35. A. I. Sokolov and B. N. Shalaev, Fiz. Tv. Tiel. 23(7):2058-2063 (1981).

    Google Scholar 

  36. K. E. Newman and E. K. Riedel, Phys. Rev. B 25(1):264-280 (1982).

    Google Scholar 

  37. G. Jug, Phys. Rev. B 27:609-612 (1983).

    Google Scholar 

  38. I. O. Mayer and A. I. Sokolov, Fiz. Tv. Tiel. 26(11):3454-3456 (1984).

    Google Scholar 

  39. I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, Ferroelectrics 95:93 (1989).

    Google Scholar 

  40. I. O. Mayer, J. Phys. A 22:2815-2823 (1989).

    Google Scholar 

  41. H. K. Janssen, K. Oerding, and E. Sengespeick, J. Phys. A 28(21):6073-6085 (1995).

    Google Scholar 

  42. D. Chowdhury and D. Staufer, J. Stat. Phys. 44(1/2):203-210 (1986).

    Google Scholar 

  43. J. Marro, A. Labarta, and J. Tejada, Phys. Rev. B 34(1):347-349 (1986).

    Google Scholar 

  44. J.-S. Wang, M. Wöhlert, H. Mühlenbein, and D. Chowdhury, Physica A 166:173-179 (1990).

    Google Scholar 

  45. H.-O. Heuer, Phys. Rev. B 42(10):6476-6484 (1990); Europhys. Lett. 12(6):551–556 (1990).

    Google Scholar 

  46. H.-O. Heuer, J. Phys. A 26:L333-L339 (1993).

    Google Scholar 

  47. T. Holey and M. Fähnle, Phys. Rev. B 41:11709-11712 (1990).

    Google Scholar 

  48. Vik. S. Dotsenko and Vl. S. Dotsenko, J. Phys. C 15:495-507 (1982).

    Google Scholar 

  49. R. Shankar, Phys. Rev. Lett. 58(23):2466-2469 (1987).

    Google Scholar 

  50. B. N. Shalaev, Fiz. Tv. Tiel. 30:895 (1988).

    Google Scholar 

  51. A. W. Ludwig, Phys. Rev. Lett. 61:2388 (1988).

    Google Scholar 

  52. B. N. Shalaev, Fiz. Tv. Tiel. 31:93 (1989).

    Google Scholar 

  53. A. W. Ludwig, Nucl. Phys. B 330:639-680 (1990).

    Google Scholar 

  54. B. N. Shalaev, Phys. Reports 237(3):129-188 (1994).

    Google Scholar 

  55. J.-S. Wang, W. Selke, Vl. S. Dotensko, and V. B. Andreichenko, Europhys. Lett. 11:301-305 (1990); Physica A 164:221–239 (1990).

    Google Scholar 

  56. V. B. Andreichenko, Vl. S. Dotensko, W. Selke, and J.-S. Wang, Nuclear. Phys. B 344:531-556 (1990).

    Google Scholar 

  57. H.-O. Heuer, Phys. Rev. B 45(10):5691-5694 (1992).

    Google Scholar 

  58. A. L. Talapov and L. N. Shchur, preprints Hep-lat-9404002 and Hep-lat-9404011.

  59. W. Selke, L. N. Schur, and A. L. Talapov, Monte Carlo simulations of dilute Ising models, in Annual Reviews of Computational Physics, D. Stauffer, ed. (World Scientific, Singapore).

  60. R. E. Cowley, R. J. Birgeneau, G. Shirane, H. J. Guggenstein, and H. Ikada, Phys. Rev. B 21(9):4038-4048 (1980).

    Google Scholar 

  61. M. Hagen, R. A. Cowley, R. M. Nicklow, and H. Ikeda, Phys. Rev. B 36(1):401-408 (1987).

    Google Scholar 

  62. Vik. S. Dotensko and Vl. S. Dotensko, Adv. Phys. 32(2):129-172 (1983).

    Google Scholar 

  63. J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett. 72(17):2785-2788 (1994).

    Google Scholar 

  64. G. Golner and E. Riedler, Phys. Rev. Lett. 34:856 (1975); Phys. Lett. A 58:11 (1976).

    Google Scholar 

  65. B. Shalaev, Zh. Eksp. Teor. Fiz. 73:3201 (1977).

    Google Scholar 

  66. C. Jayaprakash and H. J. Katz, Phys. Rev. B 16(9):3987-3990 (1977).

    Google Scholar 

  67. Yu. Holovatch and M. Shpot, J. Stat. Phys. 66(3/4):867-883 (1992).

    Google Scholar 

  68. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, Field theoretical approach to critical phenomena, in Phase Transitions and Critical Phenomena, Vol. 6 (Academic Press, New York, 1976).

    Google Scholar 

  69. D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (Singapore, World Scientific, 1984).

    Google Scholar 

  70. The subscripts u, v at Γ (0, 4)R, u , Γ (0, 4)R, v denote the O(mn)-symmetric and hypercubic parts of the four-point vertex function.

  71. Yu. Holovatch, unpublished.

  72. We have used the change of the notations (m + 8) Du/6 → u, (mn + 8) Dv/6 → v and (m + 8) Dβu/6 → βu, (mn + 8) Dβv/6 → βv with D being one loop integral D = 1/(2π)d × ∫ ddq(q 2 + 1)−1 in order to define convenient numerical scale in which the first two coefficients of the functions βu and βv are −1 and +1.

  73. B. G. Nickel, D. I. Meiron, and G. A. Baker, Compilation of 2pt and 4pt graphs for continuous spin model, University of Geulph Report, 1977.

  74. N. A. Shpot, Phys. Lett. A 142 (8, 9):474-478 (1989).

    Google Scholar 

  75. L. Lipatov, Sov. Phys. JETP. 45(2):216-223 (1977).

    Google Scholar 

  76. E. Brézin, J. Le Guillou, J. Zinn-Justin, Phys. Rev. D 15(6):1544-1557 (1977).

    Google Scholar 

  77. E. Brézin and G. Parisi, J. Stat. Phys. 19(3):269-292 (1978).

    Google Scholar 

  78. J.-P. Eckmann, J. Magnen, and R. Senseor, Commun. Math. Phys. 39(4):251-271 (1975).

    Google Scholar 

  79. G. H. Hardy, Divergent Series (Oxford, 1948).

  80. Note that for finite number of terms changing of order of integration and summation can always be performed.

  81. G. A. Baker, B. G. Nickel, M. S. Green, and D. I. Meiron, Phys. Rev. Lett. 36:1351 (1976).

    Google Scholar 

  82. G. A. Baker, B. G. Nickel, and D. I. Meiron, Phys. Rev. B 17(3):1365-1374 (1978).

    Google Scholar 

  83. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21(9):3976-3988 (1980).

    Google Scholar 

  84. J. S. R. Chisholm, Math. Comp. 27:841-848 (1973).

    Google Scholar 

  85. H. Kleinert and S. Thoms, Phys. Rev. D 52(10):5926-5943 (1995).

    Google Scholar 

  86. Yu. Holovatch and T. Yavors'kii, unpublished.

  87. C. Bervillier, Phys. Rev. B 34(11):8141-8143 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holovatch, Y., Yavors'kii, T. Critical Exponents of the Diluted Ising Model between Dimensions 2 and 4. Journal of Statistical Physics 92, 785–808 (1998). https://doi.org/10.1023/A:1023032307964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023032307964

Navigation