Skip to main content
Log in

Complexity of Two-Dimensional Patterns

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of “regular language” or “local rule” that are equivalent in d=1 lead to distinct classes in d≥2. We explore the closure properties and computational complexity of these classes, including undecidability and L, NL, and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d≥2 has a periodic point of a given period, and that certain “local lattice languages” are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t −d unless it maps every initial condition to a single homogeneous state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Artuso, E. Aurell, and P. Cvitanović, Recycling strange sets, Nonlinearity 3:325 (1990).

    Google Scholar 

  2. F. Barahona, J. Phys. A: Math. Gen. 15:3241 (1982).

    Google Scholar 

  3. Y. Bargury and J. Makowsky, The expressive power of transitive closure and 2-way multihead automata, in Lecture Notes in Computer Science, Vol. 626 (Springer-Verlag, 1992), pp. 1–14.

  4. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  5. R. Berger, The undecidability of the domino problem, Memoirs Amer. Math. Soc. 66:1–72 (1966).

    Google Scholar 

  6. M. Blum and C. Hewitt, Automata on a 2-dimensional tape, 8th IEEE Symp. on Switching and Automata Theory, pp. 155–160 (1967).

  7. S. A. Cook, Linear time simulation of deterministic two-way pushdown automata, Proc. 1971 IFIP Congress, pp. 75–80.

  8. W. Coy, Automata in labyrinths, in Lecture Notes in Computer Science, Vol. 56 (Springer-Verlag, 1977), pp. 65–71.

  9. J. P. Crutchfield and K. Young, Computation at the onset of chaos, in Complexity, Entropy, and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, 1990).

  10. J. P. Crutchfield, Unreconstructible at any radius, Physics Letters A 171:52–60 (1992).

    Google Scholar 

  11. S. Finch, Hard square entropy constant. http://www.mathsoft.com/asolve/constant/square/square.html.

  12. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979).

    Google Scholar 

  13. D. Giammarresi and A. Restivo, Recognizable picture languages, Int. J. of Pattern Recognition and Artificial Intelligence 6(2–3):241–256 (1992).

    Google Scholar 

  14. D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas, Monadic second order logic over rectangular pictures and recognizability by tiling systems, Information and Computation 125(1):32–45 (1996).

    Google Scholar 

  15. D. Giammarresi and A. Restivo, Two-dimensional languages. To appear in Handbook of Formal Languages, G. Rosenberg and A. Salomaa, eds. (Springer-Verlag, 1996).

  16. P. Goralcik, A. Goralcikova, and V. Koubek, Alternation with a pebble, Information Processing Letters 38(1):7–13 (1991).

    Google Scholar 

  17. R. Greenlaw, H. J. Hoover, and W. L. Russo, Limits to Parallel Computation: P-Completeness Theory (Oxford University Press, 1995).

  18. B. Grünbaum and G. C. Shepard, Tilings and Patterns (W. H. Freeman, San Fiancisco, 1987).

    Google Scholar 

  19. V. Guillemin and A. Pollack, Differential Topology (Prentice-Hall, 1974).

  20. See for instance Chap. 5 of J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, 1983).

  21. Silas Haslam, A General History of Labyrinths (Vienna, 1888).

  22. G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory 3:320–375 (1969).

    Google Scholar 

  23. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, 1979).

  24. L. P. Hurd, Formal language characterization of cellular automaton limit sets, Complex Systems 1:69–80 (1987).

    Google Scholar 

  25. L. P. Hurd, Recursive cellular automata invariant sets, Complex Systems 4:119–129 (1990).

    Google Scholar 

  26. K. Inoue and A. Nakamura, Some properties of two-dimensional on-line tesselation acceptors, Information Sciences 13:95–121 (1977).

    Google Scholar 

  27. K. Inoue, A. Nakamura, and I. Takanami, A note on two-dimensional finite automata, Information Processing Letters 7(1):48–53 (1978).

    Google Scholar 

  28. K. Inoue and A. Nakamura, Two-dimensional finite automata and unacceptable functions, Int. J. Comput. Math. A 7:207–213 (1979).

    Google Scholar 

  29. K. Inoue and I. Takanami, A survey of two-dimensional automata theory, Information Sciences 55:99–121 (1991).

    Google Scholar 

  30. E. Jen, Global properties of cellular automata, Journal of Statistical Physics 43:219–242 (1986).

    Google Scholar 

  31. B. Kitchens and K. Schmidt, Periodic points, decidability, and Markov subgroups, in Lecture Notes in Mathematics, Vol. 1042, pp. 440–454 (Springer-Verlag, 1988).

  32. D. Lind and B. Marcus, Symbolic Dynamics and Coding (Cambridge University Press, 1995).

  33. A. Lindenmayer, Developmental systems without cellular interaction, their languages and grammars, Journal of Theoretical Biology 30:455–484 (1971).

    Google Scholar 

  34. K. Lindgren, Correlations and random information in cellular automata, Complex Systems 1:529–543 (1987).

    Google Scholar 

  35. K. Lindgren and M. G. Nordahl, Universal computation in simple one-dimensional cellular automata, Complex Systems 4:299–318 (1990).

    Google Scholar 

  36. K. Lindgren, C. Moore, and M. G. Nordahl, Complexity of two-dimensional patterns, J. Unpub. Res. 1:1–32 (1990).

    Google Scholar 

  37. A. de Luca and S. Varrichio, A positive pumping condition for regular sets, Bulletin of the ETACS 39:171–175 (1989).

    Google Scholar 

  38. J. Mikiesz, The global minimum of energy is not always a sum of local minima—a note on frustration, Journal of Statistical Physics 71:425–434 (1993).

    Google Scholar 

  39. D. L. Milgram, A region crossing problem for array-bounded automata, Information and Control 31:147–152 (1976).

    Google Scholar 

  40. S. Milošević, B. Stošić, and T. Stošić, Towards finding exact residual entropies of the Ising antiferromagnets, Physica A 157:899–906 (1989).

    Google Scholar 

  41. M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, 1967).

  42. B. Monien, Transformational methods and their application to complexity problems, Acta Informatica 6:95–108 (1976); and Corrigenda, 8:383–384 (1977).

    Google Scholar 

  43. C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Rev. Lett. 64:2354–2357 (1990); and Nonlinearity 4:199–230 (1991).

    Google Scholar 

  44. M. G. Nordahl, Formal languages and finite cellular automata, Complex Systems 3:63–78 (1989).

    Google Scholar 

  45. A. Nakamura, Three-dimensional connected pictures are not recognizable by finite-state acceptors, Information Sciences 66:225–234 (1992).

    Google Scholar 

  46. G. Y. Onoda, P. J. Steinhardt, D. P. DiVincenzo, and J. E. S. Socolar, Growing perfect quasicrystals, Physical Review Letters 60:2653–2656 (1988).

    Google Scholar 

  47. N. Packard and S. Wolfram, Two-dimensional cellular automata, Journal of Statistical Physics 38:901–946 (1985).

    Google Scholar 

  48. C. H. Papadimitriou, Computational Complexity (Addison-Wesley, 1994).

  49. R. J. Parikh, On context-free languages, Journal of the ACM 4:570–581 (1966).

    Google Scholar 

  50. R. M. Robinson, Undecidability and nonperiodicity of tilings of the plane, Inventiones Math. 12:177 (1971).

    Google Scholar 

  51. A. Rosenfeld, Picture Languages: Formal Models for Picture Recognition (Academic Press, 1979).

  52. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series (Springer-Verlag, New York, 1978).

    Google Scholar 

  53. A. G. Schlijper, Tiling problems and undecidability in the cluster variation method, Journal of Statistical Physics 50:689–714 (1988).

    Google Scholar 

  54. J. D. Shore, M. Holzer, and J. P. Sethna, Logarithmically slow domain growth in nonrandomly frustrated systems: Ising models with competing interactions, Physical Review B 46:376–404 (1992).

    Google Scholar 

  55. M. Sipser, Halting space-bounded computations, Theoretical Computer Science 10:335–338 (1980).

    Google Scholar 

  56. A. Szepietowski, Two-dimensional on-line tesselation acceptors are not closed under complement, Information Sciences 64:115–120 (1992).

    Google Scholar 

  57. H. Wang, Proving theorems by pattern recognition II, Bell System Tech. J. 40:1–42 (1961).

    Google Scholar 

  58. B. Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77:462 (1973).

    Google Scholar 

  59. S. Willson, On the ergodic theory of cellular automata, Mathematical Systems Theory 9:132–141 (1975).

    Google Scholar 

  60. S. Wolfram, Computation theory of cellular automata, Communications in Mathematical Physics 96:15–57 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindgren, K., Moore, C. & Nordahl, M. Complexity of Two-Dimensional Patterns. Journal of Statistical Physics 91, 909–951 (1998). https://doi.org/10.1023/A:1023027932419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023027932419

Navigation