Skip to main content
Log in

Anisotropic Quantum Dots

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents a detailed calculation of the electronic structure of quantum dots with various geometries. In particular, non-circular quantum dots are examined and their characteristic properties analysed. A general matrix method was developed that allows us to treat a wide range of quantum dots with arbitrarily complex confinement potentials. The Hartree-Fock self-consistent method is applied to study quantum dots with many-electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashoori R.C. 1996. Nature 379: 413–419.

    Google Scholar 

  • Burkard G. and Loss D. 1999. Phys. Rev. B 59: 2070–2078.

    Google Scholar 

  • DiVincenzo D.P., Bacon D., Kempe J., Burkard G., and Whaley K.B. 2000. Nature 408: 339–342.

    Google Scholar 

  • Engel H.A., Recher P., and Loss D. 2001. Solid state communication 119: 229–236.

    Google Scholar 

  • Ezaki T., Mori N., and Hamaguchi C. 1997. Phys. Rev. B 56: 6428–6431.

    Google Scholar 

  • Ezaki T., Sugimoto Y., Mori N., and Hamaguchi C. 1998. Semicond. Sci. Technol. 13: A1–A3.

    Google Scholar 

  • Gammon D. 2000. Nature 405: 899–900.

    Google Scholar 

  • Kouwenhoven L.P., Austing D.G., and Tarucha S. 2001. Rep. Prog. Phys. 64: 701–736.

    Google Scholar 

  • Lee I.H., Rao V., Martin R.M., and Leburton J.P. 1998. Phys. Rev. B 57: 9035–9042.

    Google Scholar 

  • Lehoucq R.B. and Sorensen D.C. 1996. SIAM J. Matrix Analysis and Applications17: 789–821.

    Google Scholar 

  • Macucci M., Hess K., and Iafrate G.J. 1993. Phys. Rev. B 48: 17354–17363.

    Google Scholar 

  • Macucci M., Hess K., and Iafrate G.J. 1995. J. Appl. Phys. 77: 3267–3276.

    Google Scholar 

  • Macucci M., Hess K., and Iafrate G.J. 1997. Phys. Rev. B 55: R4879–R4882.

    Google Scholar 

  • McCarthy S.A., Wang J., and Abbott P.C. 2001. Comput. Phys. Commun. 141: 175–204.

    Google Scholar 

  • Pfannkuche D., Gudmundsson V., and Maksym P. 1993. Phys. Rev. B 47: 2244–2250.

    Google Scholar 

  • Reed M.A. 1993. Scientific American 98–102.

  • Saad Y. 1992. Numerical Methods for Large Eigenvalue Problems. Halsted Press.

  • Tanner B.K. 1995. Introduction to the Physics of Electrons in Solids. Cambridge University Press.

  • Tarucha S. et al. 1996. Phys. Rev. Lett. 77: 3613–3616.

    Google Scholar 

  • Vdovin E.E., Levin A., Patanè A., Eaves L., Main P.C., Khanin Y.N., Dubrovskii Y.V., Henini M., and Hill G. 2000. Science 290: 122– 124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Hines, C. Anisotropic Quantum Dots. Journal of Computational Electronics 1, 491–501 (2002). https://doi.org/10.1023/A:1022901407124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022901407124

Navigation