Skip to main content
Log in

On solutions of quasilinear wave equations with nonlinear damping terms

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we consider the existence and asymptotic behavior of solutions of the following problem:

$$\begin{gathered} utt(t,x) - (\alpha + \beta {\kern 1pt} \parallel \,\nabla u(t,x)\,\parallel _2^2 + \beta \,\parallel \,\nabla u(t,x)\,\parallel _2^2 )\Delta u(t,x) + \delta \,|\,u_t (t,x)^{p - 1} u_t (t,x) \hfill \\ \;\;\; = \mu \,|\,u(t,x){\kern 1pt} \,|^{q - 1} u(t,x),\;\;\;x \in \Omega ,\;\;\;t \geqslant 0, \hfill \\ \end{gathered}$$
$$\begin{gathered} utt(t,x) - (\alpha + \beta {\kern 1pt} \parallel \,\nabla u(t,x)\,\parallel _2^2 + \beta \,\parallel \,\nabla {\kern 1pt} \nu (t,x)\,\parallel _2^2 )\Delta \nu (t,x) + \delta \,|\,\nu _t (t,x)^{p - 1} \nu _t (t,x) \hfill \\ \;\;\; = \mu \,|\,\nu (t,x){\kern 1pt} \,|^{q - 1} \nu (t,x),\;\;\;x \in \Omega ,\;\;\;t \geqslant 0, \hfill \\ \end{gathered}$$
$$u(0,x) = u_0 (x),\;\;u_t (0,x) = u_1 (x),\;\;x \in \Omega ,$$
$$v(0,x) = v_0 (x),\;\;v_t (0,x) = v_1 (x),\;\;x \in \Omega ,$$
$$u{\kern 1pt} |_{\;\partial \Omega } = v{\kern 1pt} |_{\;\partial \Omega } = 0$$

where q>1, q⩾1, δ>0, α>0, β⩾0, \(\mu \in {\mathbb{R}}\) is the Laplacian in \({\mathbb{R}}^N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Brito: Nonlinear Initial Boundary Value Problems. Nonlinear Anal. 11 (1987), 125–137.

    Google Scholar 

  2. C. Corduneanu: Principles of Differential and Integral Equations. Chelsea Publishing Company, The Bronx, New York, 1977.

    Google Scholar 

  3. R. Ikehata: On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions. T R U Math. 24 (1988), 1–17.

    Google Scholar 

  4. T. Matsuyama, R. Ikehata: On Global Solutions and Energy Decay for the Wave Equations of Kirchhoff type with Nonlinear Damping terms. J. Math. Anal. Appl. 204 (1996), 729–753.

    Google Scholar 

  5. M. Nakao: Asymptotic Stability of the Bounded or Almost Periodic Solutions of the Wave Equations with Nonlinear Damping terms. J. Math. Anal. Appl. 58 (1977), 336–343.

    Google Scholar 

  6. K. Narasimha: Nonlinear Vibration of an Elastic String. J. Sound Vibration 8 (1968), 134–146.

    Google Scholar 

  7. K. Nishihara, Y. Yamada: On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms. Funkcial. Ekvac. 33 (1990), 151–159.

    Google Scholar 

  8. K. Ono: Global Existence, Decay and Blowup of Solutions for some Mildly Degenerate Nonlinear Kirchhoff Strings. J. Differential Equations 137 (1997), 273–301.

    Google Scholar 

  9. M. D. Silva Alves: Variational Inequality for a Nonlinear Model of the Oscillations of Beams. Nonlinear Anal. 28 (1997), 1101–1108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Bae, J.J. On solutions of quasilinear wave equations with nonlinear damping terms. Czechoslovak Mathematical Journal 50, 565–585 (2000). https://doi.org/10.1023/A:1022889711817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022889711817

Navigation