Skip to main content
Log in

An asymptotic property of gap series. II

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

An upper bound estimate in the law of the iterated logarithm for Σf(n k ω) where nk+1∫nk≧ 1 + ck (α≧0) is investigated. In the case α<1/2, an upper bound had been given by Takahashi [15], and the sharpness of the bound was proved in our previous paper [8]. In this paper it is proved that the upper bound is still valid in case α≧1/2 if some additional condition on {n k} is assumed. As an application, the law of the iterated logarithm is proved when {n k} is the arrangement in increasing order of the set B(τ)={1 i 1...qτ i τ|i1,...,iτN 0}, where τ≧ 2, N 0=NU{0}, and q 1,...,q τ are integers greater than 1 and relatively prime to each others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Berkes, On the central limit theorem for lacunary trigonometric series, Anal. Math., 4 (1978), 159–180.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Csörgő and P. Révész, Strong Approximation in Probability and Statistics, Academic Press (1981).

  3. S. Dhompongsa, Uniform laws of the iterated logarithm for Lipschitz classes of functions, Acta Sci. Math. (Szeged), 50 (1986), 105–124.

    MATH  MathSciNet  Google Scholar 

  4. P. Erdős, On trigonometric series with gaps, Magyar Tud. Akad. Kutató Int. Közl., 7 (1962), 37–42.

    Google Scholar 

  5. J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math., 53 (1984), 225–244.

    MATH  MathSciNet  Google Scholar 

  6. J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory (A. Baker, ed.), Cambridge University Press (London and New York, 1988), pp. 110–174.

    Google Scholar 

  7. K. Fukuyama, Almost sure invariance principles for lacunary trigonometric series, C.R. Acad. Paris, Série I, 332 (2001), 685–690.

    MATH  MathSciNet  Google Scholar 

  8. K. Fukuyama, An asymptotic property of gap series, Acta. Math. Hungar., 97 (2002), 209–216.

    Article  MathSciNet  Google Scholar 

  9. K. Fukuyama and B. Petit, Le théorème limite central pour les suites de R. C. Baker, Ergod. Theory Dynam. Sys., 21 (2001), 479–492.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. A. Hunt, On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues (Proc. Conf. Edwardsville, Ill., 1967), pp. 235–255. Southern Illinois Univ. Press, Carbondale, Ill. 1968.

    Google Scholar 

  11. T. Murai, The central limit theorem for trigonometric series, Nagoya Math. J., 87 (1982), 79–94.

    MATH  MathSciNet  Google Scholar 

  12. E. Péter, A probability limit theorem for { f(nx)} , Acta Math. Hungar., 87 (2000), 23–31.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Philipp, Empirical distribution functions and strong approximation theorems for dependent variables. A problem of Baker in probabilistic number theory, Trans. A.M.S., 345 (1994), 705–727.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad., 38 (1962), 101–104.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Takahashi, An asymptotic behavior of { f(n k t)} , Sci. Rep. Kanazawa Univ., 33 (1988), 27–36.

    MathSciNet  Google Scholar 

  16. R. Tijdeman, On integers with many small prime factors, Compositio Math., 26 (1973), 319–330.

    MATH  MathSciNet  Google Scholar 

  17. A. J. van der Poorten and H. P. Schlickewei, The growth conditions for recurrence sequences, Macquarie Math. Reports, 82–0041 (1982).

  18. A. Zygmund, Trigonometric Series, Vol I, Cambridge University Press (1959).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuyama, K., Petit, B. An asymptotic property of gap series. II. Acta Mathematica Hungarica 98, 245–258 (2002). https://doi.org/10.1023/A:1022877909906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022877909906

Navigation