Skip to main content
Log in

Nonasymptotic Transport Properties in Fluids and Mixtures Near a Critical Point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We review the critical dynamics of fluids and mixtures. Special attention in the comparison with experiment is paid to nonasymptotic effects. Our theoretical results are based on the complete model H′ of Siggia, Halperin, and Hohenberg including the sound mode variables. Using the dynamic renormalization group theory, we calculate the temperature dependence of the transport coefficients as well as the frequency-dependent sound velocity and sound attenuation. In mixtures a time ratio between the Onsager coefficients related to the diffusive modes, which is directly related to the critical enhancement of the thermal conductivity near a consolute point, has to be taken into account. The sound mode contains, besides the dynamic parameters, a static coupling related to the logarithmic derivative of the weakly diverging specific heat. The deviation from the asymptotic value of this coupling at finite frequencies and temperature distance from T c leads to additional nonasymptotic effects. Our theory, which derives the phenomenological ansatz of Ferrell and Bhattacharjee for pure fluids and mixtures near a consolute point, is also applicable near a plait point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1991).

    Google Scholar 

  2. R. Folk and G. Moser, J. Low Temp. Phys. 99:11 (1995).

    Google Scholar 

  3. H. Mensah-Brown and W. A. Wakeham, Int. J. Thermophys. 16:237 (1995).

    Google Scholar 

  4. L. H. Cohen, M. Dingus, and H. Meyer, J. Low Temp. Phys. 49:545 (1982).

    Google Scholar 

  5. E. P. Sankonidou, H. R. van den Berg, C. A. ten Seldam, and J. V. Sengers, Phys. Rev. E 56:R4943 (1997); J. Chem. Phys. 109:717 (1998).

    Google Scholar 

  6. R. Folk and G. Moser, Europhys. Lett. 24:533 (1993).

    Google Scholar 

  7. K. Kawasaki, Ann. Phys. 61:1 (1970).

    Google Scholar 

  8. J. V. Sengers, in Supercritical Fluids: Fundamentals for Application, E. Kiran and J. M. H. Levelt Sengers, eds. (Kluwer, Dodrecht, 1994); J. V. Sengers, in Transport Properties of Fluids: Their Correlation, Prediction and Estimation, J. Millat, J. H. Dymond, and C. A. Nieto de Castro, eds. (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  9. E. D. Siggia, B. I. Halperin, and P. C. Hohenberg, Phys. Rev. B 13:2110 (1976); C. De Dominicis and L. Peliti, Phys. Rev. B 18:353 (1978).

    Google Scholar 

  10. R. Folk and G. Moser, Phys. Rev. Lett. 75:2706 (1995).

    Google Scholar 

  11. V. Dohm and R. Folk, Phys. Rev. Lett. 46:349 (1981); V.Dohm, J. Low. Temp. Phys. 69:51 (1987).

    Google Scholar 

  12. R. Folk and G. Moser, Phys. Rev. E 57:683, 705 (1998).

    Google Scholar 

  13. J. K. Bhattacharjee and R. A. Ferrell, Phys. Lett. A 76:290 (1980); 86:109 (1981); 88:77 (1982).

    Google Scholar 

  14. R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. A 31:1788 (1985).

    Google Scholar 

  15. R. Dengler and F. Schwabl, Europhys. Lett. 4:1233 (1987).

    Google Scholar 

  16. R. Folk and G. Moser, Proceedings of the RG96-conference, Dubna, Aug. 1996.

  17. A. Onuki, Phys. Rev. E 55:403 (1997).

    Google Scholar 

  18. T. Doiron, D. Gestrich, and H. Meyer, Phys. Rev. B 22:3202 (1980).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987).

    Google Scholar 

  20. M. Giglio and A. Vendramini, Phys. Rev. Lett. 35:561 (1975.

    Google Scholar 

  21. A. Zielensny, J. Schmitz, S. Limberg, A. G. Aizpiri, S. Fusenig, and D. Woerman, Int. J. Thermophys. 15:67 (1994).

    Google Scholar 

  22. R. Folk and G. Moser, Condensed Matter Phys. (Ukraine) 7:27 (1996); R. Folk and G. Moser, in Lectures on Cooperative Phenomena in Condensed Matter, D. I. Uzunov, ed. (Heron Press, Sofia, 1996).

    Google Scholar 

  23. J. Pankert and V. Dohm, Phys. Rev. B 40:10842, 10856 (1989).

    Google Scholar 

  24. G. Moser, J. Pankert, and V. Dohm, unpublished manuscript.

  25. R. Dengler and F. Schwabl, Z. Phys. B 69:327 (1987).

    Google Scholar 

  26. R. A. Ferrell, Int. J. Thermophys. 10:369 (1989).

    Google Scholar 

  27. D. B. Roe, B. A. Wallace, and H. Meyer, J. Low Temp. Phys. 16:51 (1974).

    Google Scholar 

  28. D. B. Roe and H. Meyer, J. Low Temp. Phys. 30:91 (1978).

    Google Scholar 

  29. D. Sarid and D. S. Cannell, Phys. Rev. A 15:735 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folk, R., Moser, G. Nonasymptotic Transport Properties in Fluids and Mixtures Near a Critical Point. International Journal of Thermophysics 19, 1003–1017 (1998). https://doi.org/10.1023/A:1022669121290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022669121290

Navigation