Skip to main content
Log in

Somatic mobility of the maize element Ac and its utility for gene tagging in aspen

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have investigated the somatic activity of the maize Activator (Ac) element in aspen with the objective of developing an efficient transposon-based system for gene isolation in a model tree species. The analysis of the new insertion sites revealed the exact reconstitution of the Ac, however, aberrant transposition events were also found. Characterization of the genomic sequences flanking the Ac insertions showed that about one third (22/75) of the sequences were significantly similar to sequences represented in public databases and might correspond to genes. The frequency of Ac landing into coding regions was about two-fold higher when compared to the frequency of T-DNA hitting the predicted genes (5/32) in the aspen genome. Thus, Ac is demonstrated to be a potentially useful heterologous transposon tag in a tree species. This is the first report on transposon-based gene tagging in a tree species describing the excision and reinsertion of transposable element into new genomic positions. We also suggest a heterologous transposon tagging strategy that can be used in aspen somatic cells to obtain dominant gain-of-function mutants and recessive loss-of-function mutants overcoming the regeneration time barrier of a long-lived tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Google Scholar 

  • Belzile, F. and Yoder, J.I. 1992. Pattern of somatic transposition in a high copy Ac tomato line. Plant J. 2: 173–179.

    Google Scholar 

  • Chen, J., Greenblatt, I.M. and Dellaporta, S.L. 1992. Molecular analysis of Ac transposition and DNA replication. Genetics 130: 665–676.

    Google Scholar 

  • Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H.K. 1993. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378.

    Google Scholar 

  • Cowperthwaite, M., Park, W., Xu, Z., Yan, X., Maurais, S.C, and Dooner, H.K. 2002. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14: 713–726.

    Google Scholar 

  • Craig, N.L. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437–474.

    Google Scholar 

  • Feldmann, K.A. 1991. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1: 71–82.

    Google Scholar 

  • Fladung, M. 1999a. Prospects for the isolation of genes controlling tree-specific traits by using a transposon tagging approach. In: A. Altman, M. Ziv, and S. Izhar, (Eds.) Plant Biotechnology and In Vitro Biology in the 21st Century, Kluwer Academic Publishers, Dordrecht, pp. 139-142.

    Google Scholar 

  • Fladung, M. 1999b. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol. Gen. Genet. 260: 574–581.

    Google Scholar 

  • Fladung, M. and Ahuja, M.R. 1997. Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-Populus. Plant Mol. Biol. 33: 1097–1103.

    Google Scholar 

  • Fladung, M., Kumar, S. and Ahuja, M.R. 1997. Genetic transformation of Populus genotypes with different chimeric gene constructs: Transformation efficiency and molecular analysis Trans. Res. 6: 111–121.

    Google Scholar 

  • Greco, R., Ouwerkerk, P.B.F., Taal, A.J.C., Favalli, C., Beguiristain, T., Puigdom'enech, P., Colombo, L., Hoge, J.H.C. and Pereira, A. 2001. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol. Biol. 46: 215–227.

    Google Scholar 

  • James, D.W. Jr., Lim, E., Keller, J., Plooy, I., Ralston, E. and Dooner, H.K. 1995. Directed tagging of the Arabidopsis FATTY ACID ELONGATION 1 (FAE1) gene with the maize transposon Activator. Plant Cell 7: 309–319.

    Google Scholar 

  • Jones, J.D.G., Bishop, G., Carroll, B., Dickinson, M., English, J., Harrison, K., Jones, D., Scofield, S., and Thomas, C.M. 1992. Prospects for establishing a tomato gene tagging system using the maize transposon activator (Ac). Proc. R. Soc. Edinb. 99B: 107–119.

    Google Scholar 

  • Kakimoto, T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982–985.

    Google Scholar 

  • Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G.P., and Schell, J. 1989. High-frequency T-DNA– mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.

    Google Scholar 

  • Kumar, S. and Fladung, M. 2000. Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in host genome. Mol. Gen. Genet. 264: 20–28.

    Google Scholar 

  • Kumar, S. and Fladung, M. 2001. Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213: 731–740.

    Google Scholar 

  • Kumar, S. and Fladung, M. 2002. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J. 31: 543–551.

    Google Scholar 

  • Lawrence, G.J., Finnegan, E.J., Ayliff, M.A. and Ellis, J.G. 1995. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7: 1195–1206.

    Google Scholar 

  • Liu, Y.G., Mitsukawa, N., Oosumi, T and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Long, D., Goodrich, J., Wilson, K., Sundberg, E., Martin, M., Puangsomlee, P. and Coupland, G. 1997. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11: 145–148.

    Google Scholar 

  • Maes, T., Keukeleire, P.D. and Gerats, T. 1999. Plant tagnology. Trends Plant Sci. 4: 90–96.

    Google Scholar 

  • Martienssen, R.A. 1998. Functional genomics: Probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95: 2021–2026.

    Google Scholar 

  • Meissner, R., Chague, V., Zhu, Q., Emmanuel, E., Elkind, Y. and Levy, A.A. 2000. A high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22: 265–274.

    Google Scholar 

  • Ochman, H., Gerber, A.S. and Hartl, D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.

    Google Scholar 

  • Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.

    Google Scholar 

  • Saedler, H. and Nevers, P. 1985. Transposition in plants: a molecular model. EMBO J. 4: 585–590.

    Google Scholar 

  • Schmitz, G. and Theres, K. 1994. A self-stabilizing Ac derivative and its potential for transposon tagging. Plant J. 6: 781–786.

    Google Scholar 

  • Scholz, S.C., Lörz, H. and Lütticke S. 2001. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol. Gen. Genet. 264: 653–661.

    Google Scholar 

  • Spena, A., Aalen, R.B. and Schulze, S.C. 1989. Cell-autonomous behavior of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants. Plant Cell 1: 1157–1164.

    Google Scholar 

  • Springer, P.S. 2000. Gene traps: Tools for plant development and genomics. Plant Cell 7: 1007–1020.

    Google Scholar 

  • Suzuki, Y., Uemura, S., Saito, Y., Murofushi, N., Schmitz, G., Theres, K. and Yamaguchi, I. 2001. A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Mol. Biol. 45: 123–131.

    Google Scholar 

  • Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.-Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. 2000. Activation tagging in Arabidopsis. Plant Physiol. 122: 1003–1013.

    Google Scholar 

  • Weil, C.F. and Wessler, S.R. 1993. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5: 515–522.

    Google Scholar 

  • Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Fladung, M. Somatic mobility of the maize element Ac and its utility for gene tagging in aspen. Plant Mol Biol 51, 643–650 (2003). https://doi.org/10.1023/A:1022505808929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022505808929

Navigation