Skip to main content
Log in

Uridine Nucleotide Receptors and Their Ligands: Structural, Physiological, and Pathophysiological Aspects, with Special Emphasis on the Nervous System

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This review presents data on metabotropic uridine nucleotide receptor subtypes (P2UR) activated by UTP, sometimes also by UDP and/or ATP. Some chemical details of receptor subtypes and ligand interactions are described. Ligand-activated P2UR subtypes may couple to different second messengers, yet little is known about the nature of the coupling G-proteins. Data evaluating UTP as a physiological ligand include UTP origin, release and metabolism and illuminate especially roles for P2UR in the nervous system. No evidence shows UTP as a synaptic transmitter; sympathetic neurons may, however, carry P2UR allowing UTP-stimulation of norepinephrine release. UTP and derivatives act as therapeutic agents in several diseases involving mutated genes of transepithelial conductance regulators, including cystic fibrosis. This focuses interest to the synthesis of new compounds. Further, therapeutically used pyrimidine and pyrimidine analogues are suspected to have CNS-pathological effects. The presently scarce information in these areas strongly underlines the need for and importance of intense research on the suspected pyrimidine derivative triggered pathology as well as on the role of P2UR receptors in physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Seifert, R., and Schultz, G. 1989. Involvement of pyrimidinoreceptors in regulation of cell functions by uridine and by uracil nucleotides. TiPS 10:365–369.

    Google Scholar 

  2. von Kugelgen, I. D., Häussinger, D., and Starke, K. 1987. Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn-Schmiedeberg's Arch. Pharmacol. 336:556–560.

    Google Scholar 

  3. Burnstock, G., and King, B. F. 1996. The numbering of cloned P2 purinoceptors. Drug Dev. Res. 38:67–71.

    Google Scholar 

  4. Lustig, K. D., Shiau, A. K., Brake, A. J., and Julius, D. 1993. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 90:5113–5117.

    Google Scholar 

  5. Rice, W. R., Burton, F. M., and Fiedeldey, D. T. 1995. Cloning and expression of alveolar type II cell P2u-purinergic receptor. Am. J. Respir. Mol. Biol. 12:27–32.

    Google Scholar 

  6. Chen, Z.-P., Krull, N., Xu, S., Levy, A., and Lightman, S. L. 1996. Molecular cloning and functional characterization of rat pituitary G protein-coupled ATP. Endocrinology: in press.

  7. Parr, C. E., Sullivan, D. M., Paradiso, A. M., Lazarowski, E. R., Burch, L. H., Olsen, J. C., Erb, L., Weisman, G. A., Boucher, R. C., and Turner, J. T. 1994. Cloning and expression of human P2u nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. USA 91:3275–3279.

    Google Scholar 

  8. Bowler, W. B., Birch, M. A., Gallagher, J. A., and Bilbe, G. 1995. Identification and cloning of human P2U purinoceptor present in osteoclastoma, bone and osteoblasts. J. Bone Miner. Res. 10: 1137–1145.

    Google Scholar 

  9. Communi, D., Pirotton, S., Parmentier, M., and Boeynaems, J.-M. 1995. Cloning and functional expression of human uridine nucleotide receptor, J. Biol. Chem. 270:30849–30852.

    Google Scholar 

  10. Nguyen, T., Erb, L., Weisman, G. A., Marchese, A., Heng, H. H. Q., Garrad, R. C., George, S. R., Turner, J. T., and O'Dowd, B. F. 1995. Cloning, Expression, and chromosomal localization of the human uridine nucleotide receptor gene, J. Biol. Chem. 270: 30845–30848.

    Google Scholar 

  11. Dasari, V. R., Sondhu, A. K., Mills, D. C. B., Athwal, R. S., and Kunapuli, S. P. 1996. Mapping of the P2U purinergic receptor gene to human chromosome 11Q 13.5–14.1. Somatic cell & Molecular Genetics 22:75–79.

    Google Scholar 

  12. Communi, D., Parmentier, M., and Boeynaems, J.-M. 1996. Cloning, functional expression and tissue distribution of human P2y6 receptor. Biochem. Biophys. Res. Commun. 222:303–308.

    Google Scholar 

  13. Chang, K., Hanaoka, K., Kumada, M., and Takuwa, Y. 1995. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J. Biol. Chem. 270:26152–26158.

    Google Scholar 

  14. Lustig, K. D., Weisman, G. A., Turner, J. T., Garrad, R., Shiau, A. K., and Erb, L. 1996. P2U purinoceptors: cDNA cloning, signal transduction mechanisms and structure-function analysis. Pages 193–204. in Chadwick, D. J., Goode, J. A., (eds.). Ciba foundation Symposium 198: 1995. J. Wiley & Sons, New York.

    Google Scholar 

  15. Webb, T. E., Henderson, D., King, B. F., Wang, S., Simon, J., Bateson, A. N., Burnstock, G., and Barnard, E. A., 1996. A novel G protein-coupled P2 purinoceptor (P2y3) activated preferentially by nucleoside diphosphates. Mol. Pharmacol. 50:258–265.

    Google Scholar 

  16. Nicholas, R. A., Watt, W. C., Lazarowski, E. R., Li, Q., and Harden, T. K. 1996. Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP-and UTP-specific receptor. Mol. Pharmacol. 50:224–229.

    Google Scholar 

  17. Webb, T. E., Kaplan, M. G., and Barnard, E. A. 1996. Identification of 6H1 as a P2Y purinoceptor: P2Y5. Biochem. Biophys. Res. Commun. 219:105–110.

    Google Scholar 

  18. Akbar, G. K. M., Dasari, V. R., Wegg, T. E., Ayyanathan, K., Pillarisetti, K., Sandhu, A. K., Athwal, R. S., Daniel, J. L., Ashby, B., Barnard, E. A., and Kunapuli, S. P. 1996. Molecular cloning of novel P2 purinoceptor from human erythroleukemia cells. J. Biol. Chem. 271:18363–18367.

    Google Scholar 

  19. Erb, L., Garrad, R., Wang, Y., Quinn, T., Turner, J. T., and Weisman, G. A. 1995. Site-directed mutagenisis of P2u purinoreceptors. J. Biol. Chem. 270:4185–4188.

    Google Scholar 

  20. Findlay, J., and Eliopoulos, E. 1990. Three-dimensional modeling of G-protein-linked receptors. TiPS 11:492–499.

    Google Scholar 

  21. Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. F. 1994. Structure and Function of G Protein-coupled Receptors. Annu. Rev. Biochem. 63:101–132.

    Google Scholar 

  22. Abbrachio, M. P., and Burnstock, G. 1994. Purinoceptors: Are there families of P2x and P2y purinoceptors? Pharmacol. Ther. 64:445–475.

    Google Scholar 

  23. Harden, T. K., Boyer, J. L., and Nicholas, R. A. 1995. P2-Purinergic receptors: Subtype-associated signaling responses and structure. Annu. Rev. Pharmacol. Toxicol. 35:541–579.

    Google Scholar 

  24. Uri, A., Järlebark, L., van Kügelgen, I. Schönberg, T., Undén, A., and Heilbronn, E. 1994. A new class of compounds, peptide derivatives of adenosine 5′ carboxylic acid, including inhibitors of ATP receptor-mediated response. Bioorg. Med. Chem. 2:1099–1105.

    Google Scholar 

  25. Erb, L., Lustig, K. D., Sullivan, D. M., Turner, J. T., and Weisman, G. A. 1993. Functional expression and photoaffinity labeling of a cloned P2u purinergic receptor. Prod. Natl. Acad. Sci. USA. 90:10449–10453.

    Google Scholar 

  26. Lazarowski, E. R., Watt, W. C., Stutts, M. J., and Harden, T. K. 1995. Pharmacological selectivity of cloned human P2u-purinoceptor: potent activation by diadenosine tetraphosphate. Br. J. Pharmacol. 116:1619–1627.

    Google Scholar 

  27. Pendergast, W., Siddiqi, S. M., Rideout, J. L., James, M. K., and Dougherty, R. W. 1996. Stabilized uridine triphosphate analogs as agonists of the P2y2 purinergic receptor. Drug Dev. Res. 37: 133 (Abstract).

    Google Scholar 

  28. Lazarowski, E. R., Watt, W. C., Stutts, M. J., Brown, H. A., Boucher, R. C., and Harden, T. K. 1996. Enzymatic synthesis of UTPs, a potent hydrolysis resistant agonist of P2u-purinoreceptors. Br. J. Pharmacol. 117:203–209.

    Google Scholar 

  29. Lazarowski, E. R., and Harden, T. K. 1994. Identification of uridine nucleotide-selective-G-protein-linked receptor that activates phospholipase. C. J. Biol. Chem. 269:11830–11836.

    Google Scholar 

  30. Traut, T. W. 1994. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140:1–22.

    Google Scholar 

  31. Goetz, U., DaPrada, M., and Pletscher, A. 1971. Adenine-, guanine-and uridine-5′-phospho-nucleotides in blood platelets and storage organelles of various species. J. Pharmacol. Exp. Ther. 178:210–216.

    Google Scholar 

  32. Richards, S. M., Dora, K. A., Rattigan, S., Colguhann, E. Q., and Clark, M. G. 1993. Role of extracellular UTP in release of uracil from vasoconstricted hindlimb. J. Am. Physiol. 264:H233–237.

    Google Scholar 

  33. Enemoto, K., Furuya, K., Yamagishi, S., Oka, T., and Maeno, T. 1994. The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells, Pfluegers Arch. 427:533–542.

    Google Scholar 

  34. Beukers, M. W., Pirovano, I. M., van Weert, A., and Kerkhof, C. J. 1993. Characterization of ecto-ATPase in human blood cells. A physiological role in platelet aggregation? Biochem. Pharmacol. 46:1959–1966.

    Google Scholar 

  35. Crack, B. E., Pollard, C. E., Beukers, M. W., Roberts, S. M., Hunt, S. F., Ingall, A. H., Mckechnie, K. C., Izerman, A. P., and Leff, P. 1995. Pharmacological and biochemical analysis of FPL 67156, a novel, selective inhibitor of ecto-ATPase, Br. J. Pharmacol. 114: 475–481.

    Google Scholar 

  36. Kennedy, Ch., Westfall, T. D., and Sneddan, P. 1996. Modulation of purinergic neuron transmission by ecto-ATPase. Seminars in the Neurosciences 8:195–199.

    Google Scholar 

  37. Pfeilschifter, J., and Merriweather, C. 1993. Extracellular ATP and UTP activation of phospholipase D is mediated by protein kinase C-epsilon in rat renal mesangial cells. Br. J. Pharmacol. 110:847–853.

    Google Scholar 

  38. Schofl, C., Rössig, L., Pötter, E., von zur Mühlen, A., and Brabant, G. 1995. Extracellular ATP and UTP increase cytosolic free calcium by activating a common P2-receptor in single human thyrocytes. Biochem. Biophys. Res. Commun. 213:928–934.

    Google Scholar 

  39. Conigrave, A. D., and Jiang, L. 1995. Ca2+-mobilizing receptors for ATP and UTP. Cell Calcium 17:111–119.

    Google Scholar 

  40. Reiser, G. 1995. Ca2+-and nitric oxide-dependent stimulation of cyclic GMP synthesis in neuronal cell line induced by P2-purinergic/pyrimidinergic receptor. J. Neurochem. 64:61–68.

    Google Scholar 

  41. Lin, T. A., Lustig, K. D., Sportiello, M. G., Weisman, G. A., and Sun, G. Y. 1993. Signal transduction pathways coupled to a P2U receptor in neuroblastoma × glioma (NG108-15) cells. J. Neurochem. 60:1115–1125.

    Google Scholar 

  42. Chen, Z. P., Kratzmeier, M., Poch, A., Xu, S., McArdle, C. A., Levy, A., Mukhopadhyay, A. K., and Lightman, S. L., 1996. Effects of extracellular nucleotides in the pituitary: adenosine triphosphate receptor-mediated intracellular responses in gonadotrope-derived alpha T3-1 cells. Endochrinology. 137:248–256.

    Google Scholar 

  43. Ikeuchi, Y., and Nishizaki, T. 1995. Dual effects of ATP on potassium channel and intracellular Ca2+ release in smooth muscle cells of the bovine brain arteries. Biochem. Biophys. Res. Commun. 215:1071–1077.

    Google Scholar 

  44. Rudge, S. A., Hughes, P. J., Brown, G. R., Michell, R. H., and Kirk, C. J. 1995. Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis. Mol. Cell. Biochem. 149–150:161–174.

    Google Scholar 

  45. Grubman, S. A., Perrone, R. D., Lee, D. W., Murray, S. L., Rogers, L. C., Wollkoff, L. I., Mulberg, A. E., Cherington, V., and Jefferson, D. M. 1994. Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. Am. J. Physiol. 266:G1060–G1070.

    Google Scholar 

  46. Wollkoff, L. I., Perrone, R. D., Grubman, S. A., Lee, D. W., Soltoff, S. P., Rogers, L. C., Beinkorn, M., Fang, S. L., Cheng, S. H., and Jefferson, D. M. 1995. Purinoceptor P2U identification and function in human intrahepatic epithelial cell lines. Cell Calcium 17:375–383.

    Google Scholar 

  47. Illsley, N. P., and Verkman, A. S. 1987. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.

    Google Scholar 

  48. Cheng, S. H., Rich, D. P., Marshall, J., and Gregory, R. J. 1991. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036.

    Google Scholar 

  49. Zhang, Y., Palmblad, J., and Fredholm, B. B. 1996. Biophasic effect of ATP on neutrophil functions mediated by P2u and adenosine A2a receptors. Biochem. Pharmacol. 51:957–965.

    Google Scholar 

  50. Zimmermann, H. 1994. Signalling via ATP in the nervous system. TiNS. 17:420–426.

    Google Scholar 

  51. Boehm, S., Huck, S., and Illes, P. 1995. UTP-and ATP-triggered transmitter release from rat sympathetic neurons via separate receptors, Br. J. Pharmacol. 116:2341–2343.

    Google Scholar 

  52. Forsyth, K. M., Bjur, R. A., and Westfall, D. P. 1991. Nucleotide modulation of noreepinephrine release from sympathetic nerves in the rat vas deferens. J. Pharmacol. Exp. Ther. 256:821–826.

    Google Scholar 

  53. Connolly, G. P., 1995. Differentiation by pyridoxal 5′-phosphate, PPADS and isoPPADS between depolarizations mediated by UTP and those evoked by α β-methylene-ATP on rat sympathetic ganglia. Br. J. Pharmacol. 114:727–731.

    Google Scholar 

  54. Thorne, P. R., and Housley, G. D., 1996. Purinergic signaling in sensory systems. Seminars in the Neurosciences 8:223–246.

    Google Scholar 

  55. Järlebark, L., Björklund, J., and Heilbronn, E. 1996. P2Y2 receptor expressed in rat and guinea pig cochlea-partial cloning and localization. Drug Dev. Res. 37:184.

    Google Scholar 

  56. Riach, R. A., Duncan, G., Williams, M. R., and Webb, S. F. 1995. Histamine and ATP mobilize calcium by activation of H1 and P2u receptors in human lens epithelial cells. J. Physiol. 486:273–282.

    Google Scholar 

  57. Connolly, G. P. 1994. Evidence from desensitization studies for distinct receptors for ATP and UTP on the rat superior cervical ganglion. Br. J. Pharmacol. 112:357–359.

    Google Scholar 

  58. Connolly, G. P., and Harrison, P. J. 1995. Structure-activity relationship of a pyrimidine receptor in the rat isolated superior cervical ganglion. Br. J. Pharmacol. 115:2764–2770.

    Google Scholar 

  59. Barry, V. A., and Cheek, T. R. 1994. Extracellular ATP triggers two functionally distinct calcium signalling pathways in PC12 cells. J. Cell Sci. 107:451–462.

    Google Scholar 

  60. Matsuoka, I., Zhou, Q., Ishimoto, H., and Nakanishi, H. 1995. Extracellular ATP stimulates adenylyl cyclase and phospholipase C through distinct purinoceptors in NG108-15 cells. Mol. Pharmacol. 47:855–862.

    Google Scholar 

  61. Majid, M. A., Okajima, F., and Kono, Y. 1993. UTP activates phospholipase C-Ca2+ system through a receptor in PC12 cells. Biochem. Biophys. Res. Commun. 195:415–421.

    Google Scholar 

  62. Gonzales, F. J., and Fernandez-Salguero, P. 1995. Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. TiPS 16:327–327.

    Google Scholar 

  63. Brockstedt, M., Jacobs, C., Smit, L. M., Van Gennip, A. H., and Berger, R. 1990. A new case of dihydropyrimidine deficiency. J. Inherit. Metabol. Dis. 13:121–124.

    Google Scholar 

  64. Connolly, G. P., Simmonds, H. A., and Duley, J. A. 1996. Pyrimidines and CNS regulation. TiPS 17:106.

    Google Scholar 

  65. Mc Leod, H. L., Gonzales, F. J., and Fernandez-Salguero, P. 1996. Pyrimidine metabolism has a role in normal physiology as well as in regulating drug effects. Trends in Pharmacol. Sci. 17:107.

    Google Scholar 

  66. Jentsch, T. J. 1993. Chloride channels. Curr. Opin. Neurobiol, 6: 293–303.

    Google Scholar 

  67. Higgins, C. F. 1995. The ABC of Channel Regulation. Cell 82: 693–696.

    Google Scholar 

  68. McDonough, S., Davidson, N., Lester, H. A., and McCarty, N. A. 1994. Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634.

    Google Scholar 

  69. Gunderson, K. L., and Kopito, R. 1995. Conformational States of CFTR Associated with Channel Gating: The role of ATP Binding and Hydrolysis. Cell 82:231–239.

    Google Scholar 

  70. Stutts, M. J., Canessa, C. M., Olsen, J. C., Hamrick, M., Cohn, J. A., Rossier, B. C., and Boucher, R. C. 1995. CFTR as cAMP-Dependent Regulator of Sodium Channels. Science 269:847–850.

    Google Scholar 

  71. Schwiebert, E. M., Egan, M. E., Hwang, T. H., Fulmer, S. B., Allen, S. S., Cutting, G. R., and Guggino, W. B. 1995. CFTR Regulates Outwardly Rectifying Chloride Channels through an Autocrine Mechanism Involving ATP. Cell 81:1063–1075.

    Google Scholar 

  72. Quinton, P. M. 1990. Cystic fibrosis: a disease in electrolyte transport. Faseb J. 4:2709–2717.

    Google Scholar 

  73. Cotton, C. U., Stutts, M. J., Knowles, M. R., Gatzy, J. T., and Boucher, R. C. 1987. Abnormal apical membrane in cystic fibrosis respiratory epithelium. An in vivo electrophysiologic analysis. J. Clin. Invest. 79:80–85.

    Google Scholar 

  74. Schoumacher, R. A., Shoemaker, R. L., Halm, DR, Tallant, E. A., Wallace, R. W., and Frizzell, R. A. 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754.

    Google Scholar 

  75. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielinski, J., Lok, S., Pkusic, N., and Chou, J. L. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245(4922): 1066–1073.

    Google Scholar 

  76. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L. C. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080.

    Google Scholar 

  77. Rich, D. P., Anderson, M. P., Gregory, R. J., Cheng, S. H., Paul, S., Jefferson, D. M., McCann, J. D., Klinger, K. W., Smith, A. E., and Welsh, M. J. 1990. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347(6291): 358–363.

    Google Scholar 

  78. Drumm, M. L., Pope, H. A., Cliff, W. H., Rommens, J. M., Marvin, S. A., Tsui, L. C., Collins, F. S., Frizzell, R. A., and Wilson, J. M. 1990. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62:1227–1233.

    Google Scholar 

  79. Chinet, T. C., Fullton, J. M., Yankaskas, J. R., Boucher, R. C., and Stutts M. J. 1994. Mechanism of sodium hyperabsorption in cultured cystic fibrosis nasal epithelium: a patch-clamp study. Am. J. Physiol. 266:C1061–1088.

    Google Scholar 

  80. Grubb, B. R., Paradiso, A. M., and Boucher, R. C. 1994. Anomalies in ion transport in CF mouse tracheal epithelium. Am. J. Physiol. 267:C293–300.

    Google Scholar 

  81. Anderson, M. P., Berger, H. A., Rich, D. P., Gregory, R. J., Smith, A. E., and Welsh, M. J. 1991. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775–784.

    Google Scholar 

  82. Knowles, M. R., Clarke, L. L., and Boucher, R. C., 1991. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. New Engl. J. Med. 325:533–538.

    Google Scholar 

  83. Lloyd, S. E., Pearce, S. H., Fisher, S. E., Steinmeyer, K., Schwappach, B., Scheinman, S. J., Harding, B., Bolino, A., Devoto, M., Goodyer, P., Rigden, S. P., Wrong, O., Jentsch, T. J., Craig, I. W., and Thakker, R. V. 1996. A common molecular basis for three inherited kidney stone diseases. Nature 379(6564):445–449.

    Google Scholar 

  84. Stam, N. J., Klomp, J., van de Hevvel, M., and Oligve, W. 1996. Molecular cloning and characterization of a novel orphan receptor (P2p) expressed in human pancreas that shows high structural homology to the P2u purinoceptors. FEGS Letters 384:260–264.

    Google Scholar 

  85. Lustig, K. D., Sportiello, M. G., Erb, L., and Weisman, G. A. 1992. A nucleotidereceptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP. Biochem. J. 284:733–739.

    Google Scholar 

  86. Boynaems, J.-M., and Pearson, J. D. 1990. P2 purinoceptors on vascular endostelial cells: Physiological significance and transduction mechanisms. TiPS 11:34–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilbronn, E., Knoblauch, B.H.A. & Müller, C.E. Uridine Nucleotide Receptors and Their Ligands: Structural, Physiological, and Pathophysiological Aspects, with Special Emphasis on the Nervous System. Neurochem Res 22, 1041–1050 (1997). https://doi.org/10.1023/A:1022487128766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022487128766

Navigation